K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

Chắc đề bài của bạn còn thiếu, tìm x,y thuộc Z thì tìm đc chứ thế này thì vô tận mà @@

4 tháng 5 2016

Cho mik xin lỗi xEZ

6 tháng 5 2016

Số dư là :

(p+q+2) : 12

=2

8 tháng 5 2016

Có ai giải được ko vậy

27 tháng 7 2017

1)  Đặt phép chia 1994xy  cho 72, ta có:

1994xy : 72 = 27 dư 50xy 

Xét x=1 => 501y : 72 = 6 dư 69y

Mà: số chia hết cho 72 gần số 69y là 648 và 720

=> 69y không chia hết cho 72 với mọi giá trị y

Từ đó ta thấy để 50xy chia hết cho 72 thì 50xy chia 72 phải có số dư là 72 

=> x=4

Thay x=4 ta có: 504y : 72 = 6 dư 72y

Để 72y chia hết cho 72 thì y=0

Vậy các giá trị x,y cần tìm là: x=4; y=0

2) Ta có: n là số nguyên tố >3

=> n có dạng n= 3k+1   (k\(\in\)N*)

=> n2+2015 = 3k+1+2015

=> n2+2015 = 3k+2016

Do: 3k\(⋮\)3, 2016\(⋮\)3

=> 3k+2016 \(⋮\)3

=> n2+2015 \(⋮\)3

Vậy n2+2015 là hợp số

4 tháng 12 2015

bài 5:

Chứng minh :p+q chia hết cho 4 .Từ đề bài suy ra p,q phải là 2 số lẻ liên tiếp nên p.q sẽ có dạng 4k+1 và 4k+3 suy ra p+q chia hết cho 4

Vi p,q là só nguyên tố >3 nêp,q chỉ có thể chia 3 dưa 1 hoặc 2 p=4k+1 suy ra q=3k+3 chia hết cho 3 loại p=3k+2 suy ra q=3k+1 nên p+q chia hết cho 3

suy ra p+q chia hêt cho 12

10 tháng 4 2021

Ấp dụng bất đẳng thức Bu-nhi -a- cốp-xki :

\(P^2 = (2x + 3y)^2 \leq (2^2+3^2)(x^2+y^2)=13a^2=117 \rightarrow a^2 = 9 \rightarrow a= 3 hoặc -3\)

13 tháng 3 2016

không dư

số dư là 0

2 tháng 8 2017

x = 7 , y = 5

2 tháng 8 2017

ta có :xy-2x+3y=13

         xy+3y-2x=13

         y(x+3)-2x=13

         y(x+3)-2x+6-6=13

         y(x+3)-2(x+3)-6=13

         (x+3)(y-2)=13+6=19

\(\Rightarrow\left(x+3\right)\left(y-2\right)\inƯ\left(19\right)\)\(=\left(-19;19;1;-1\right)\)

X+319-191-1
Y-21-119-19
x16-21-2-4
y3121-17

      

1 tháng 6 2015

Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2(k \(\in\) N)

Nếu q=3k+1 thì p=3k+3 nên p chia hết cho 3.Loại vì p là số nguyên tố lớn hơn 3.

Khi q=3k+2 thì p=3k+4

Vì q là số nguyên tố lớn hơn 3 nên k lẻ

Ta có p+q=6(k+1), chia hết cho 12 vì k+1 chẵn

Vậy số dư khi chia p+q cho 12 =0

p;q là các số nguyên tố >3 =>q=3k+1;3k+2

xét q=3k+1 =>p=3k+3=3(k+1) chia hết cho 3   (trái giả thuyết)

=>q=3k+2=>p=3k+2+2=3k+4

=>p+q=3k+2+3k+4=6k+6=6(k+1)

q= 3k+2 không chia hết cho 2

=>3k không chia hết cho 2

=>k không chia hết cho 2

=>k+1 chia hết cho 2=>k+1=2a

=>p+q=6(k+1)=6.2a=12a chia hết cho 12

vậy p+q chia hết cho 12