K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

bài 5:

Chứng minh :p+q chia hết cho 4 .Từ đề bài suy ra p,q phải là 2 số lẻ liên tiếp nên p.q sẽ có dạng 4k+1 và 4k+3 suy ra p+q chia hết cho 4

Vi p,q là só nguyên tố >3 nêp,q chỉ có thể chia 3 dưa 1 hoặc 2 p=4k+1 suy ra q=3k+3 chia hết cho 3 loại p=3k+2 suy ra q=3k+1 nên p+q chia hết cho 3

suy ra p+q chia hêt cho 12

1 tháng 6 2015

Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2(k \(\in\) N)

Nếu q=3k+1 thì p=3k+3 nên p chia hết cho 3.Loại vì p là số nguyên tố lớn hơn 3.

Khi q=3k+2 thì p=3k+4

Vì q là số nguyên tố lớn hơn 3 nên k lẻ

Ta có p+q=6(k+1), chia hết cho 12 vì k+1 chẵn

Vậy số dư khi chia p+q cho 12 =0

p;q là các số nguyên tố >3 =>q=3k+1;3k+2

xét q=3k+1 =>p=3k+3=3(k+1) chia hết cho 3   (trái giả thuyết)

=>q=3k+2=>p=3k+2+2=3k+4

=>p+q=3k+2+3k+4=6k+6=6(k+1)

q= 3k+2 không chia hết cho 2

=>3k không chia hết cho 2

=>k không chia hết cho 2

=>k+1 chia hết cho 2=>k+1=2a

=>p+q=6(k+1)=6.2a=12a chia hết cho 12

vậy p+q chia hết cho 12

12 tháng 3 2016

ví dụ là đúng nhất:

thử lấy p=5 xem, nếu thế thì p=7(vẫn là số nguyên tố);(5+7):12=1(dư 0)

           p=13 thì p=15;(13+15):12=2(dư 4)

Chắc thế,hi hi

24 tháng 8 2018

( p+q ) : 12 dư 0

Hk tốt

24 tháng 8 2018

Vì q có là số nguyên tố nên q có dạng 3k + 1 hoặc 3k + 2 ( k \(\in\) N )

Nếu q = 3k + 1 thì q = 3k + 3 nên p  \(\vdots\) 3 . Loại vì p là số nguyên tố > 3

Khi q = 3k + 2 thì p = 3k + 4

Vì q là số nguyên tố > 3 nên k lẻ

Ta có:

p + q = 6(k + 1),chia hết cho 12 vì k + 1 chẵn

Vậy số dư khi p + q cho 12 là 0

13 tháng 3 2016

không dư

số dư là 0

30 tháng 1 2016

rùi gioi nhi 

nha

13 tháng 2 2016

sại bét mà bảnh tỏn he he liu liu

14 tháng 9 2023

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

20 tháng 7 2015

Một bài làm không được mà bạn ra 6 bài thì ............

20 tháng 7 2015

1) -4 - x > 3 => -4 - 3 > x => -7 > x => số nguyên x lớn nhất = -8 

2) Vì x2 + 2 \(\ge\) 2 ; y4 + 6 \(\ge\) 6  với mọi x; y =>  (x2 + 2). (y4 + 6) \(\ge\) 2.6 = 12 > 10

=> Không tồn tại x; y để thỏa mãn

3) A nguyên khi 5 chia hết cho n- 7 hay n - 7 là ước của 5 

mà n nhỏ nhất nên n - 7 nhỏ nhất => n - 7 = -5 => n = 2

4) x2 + 4x + 5 = x(x+ 4) + 5 chia hết cho x + 4 => 5 chia hết cho x + 4

=> x + 4 \(\in\) {5;-5;1;-1} => x \(\in\) {1; -9; -3; -5}

5) Gọi số đó là n

n chia 3 dư 1 => n - 1 chia hết cho 3 => n - 1 + 9 = n + 8 chia hết cho 3

n chia cho 5 dư 2 => n - 2 chia hết cho 5 => n - 2 + 10 = n + 8 chia hết cho 5

=> n + 8 chia hết cho 3 và 5 => n + 8 chia hết cho 15 => n + 8  \(\in\) B(15)

Vì n có 4 chữ số nên n + 8 \(\in\) {68.15 ; 69.15 ; ...' ; 667.15} 

=> có (667 - 68) : 1 + 1 = 600 số

6) (2x-5).(y-6) = 17 = 1.17 = 17.1 = (-1).(-17) = (-17).(-1)

=> có 4 cặp x; y thỏa mãn