K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

\(P=\frac{1}{3^2}-\frac{1}{3^4}+....+\frac{1}{3^{2006}}-\frac{1}{3^{2008}}\)

\(\Rightarrow9P=1-\frac{1}{3^2}+....+\frac{1}{3^{2004}}-\frac{1}{3^{2006}}\)

\(\Rightarrow9P+P=\left(1-\frac{1}{3^2}+....+\frac{1}{3^{2004}}-\frac{1}{3^{2006}}\right)+\left(\frac{1}{3^2}-\frac{1}{3^4}+....+\frac{1}{3^{2006}}-\frac{1}{3^{2008}}\right)\)

\(\Rightarrow10P=1-\frac{1}{3^{2008}}\)

\(\Rightarrow P=\frac{1}{10}-\frac{1}{3^{2008}\cdot10}< \frac{1}{10}=0,1\)

Vậy \(P< 0,1\)

1 tháng 5 2019

a,

\(\frac{x-1}{4}-\frac{x-2}{3}\le x-\frac{x-3}{4}\\ \Leftrightarrow\frac{3x-3-4x+8}{12}\le\frac{12x-3x+9}{12}\\ \Leftrightarrow5-x\le9x+9\\ \Leftrightarrow9x+x\ge5-9\\ \Leftrightarrow10x\ge-4\\ \Leftrightarrow x\ge-\frac{2}{5}\\ Vậy...\)

1 tháng 5 2019

còn phần b thì sao bạn ơi ???

18 tháng 4 2016

999 - 888 - 111 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111 + 111 - 111

= 0 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111

= 0 + 111 - 111

= 111 - 111

= 0

9 tháng 5 2016

Ta có: \(\frac{1}{n^2}<\frac{1}{n\times\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Từ điều trên, ta có:  \(A<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2016}-\frac{1}{2017}\)

\(A<\frac{1}{2}-\frac{1}{2017}\)

\(A<\frac{2015}{4034}<1\)

0<A<1 nên A không phải là số tự nhiên.

9 tháng 5 2016

(+)Hiển nhiên A>0 vì các số hạng của A đều > 0 (1)

(+)Tổng quát: \(\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)

Ta có:\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\)

\(\Rightarrow A<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}<1\)  (2)

Từ (1);(2)

=>0<A<1

=>A ko là số tự nhiên