K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

999 - 888 - 111 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111 + 111 - 111

= 0 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111

= 0 + 111 - 111

= 111 - 111

= 0

9 tháng 5 2016

Ta có: \(\frac{1}{n^2}<\frac{1}{n\times\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Từ điều trên, ta có:  \(A<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2016}-\frac{1}{2017}\)

\(A<\frac{1}{2}-\frac{1}{2017}\)

\(A<\frac{2015}{4034}<1\)

0<A<1 nên A không phải là số tự nhiên.

9 tháng 5 2016

(+)Hiển nhiên A>0 vì các số hạng của A đều > 0 (1)

(+)Tổng quát: \(\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)

Ta có:\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\)

\(\Rightarrow A<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}<1\)  (2)

Từ (1);(2)

=>0<A<1

=>A ko là số tự nhiên

7 tháng 9 2019

Vẫn còn anh đợi tí nha

7 tháng 9 2019

a) Ta có: \(\frac{1}{2^2}>0\)

              \(\frac{1}{3^2}>0\)

               ..................

                 \(\frac{1}{2016}^2>0\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>0\)

Hay \(A>0\left(1\right)\)

Lại có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)

              ....................

             \(\frac{1}{2016^2}< \frac{1}{2015.2016}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(\Rightarrow A< 1-\frac{1}{2016}< 1\)

\(\Rightarrow A< 1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow0< A< 1\)

\(\Rightarrow A\)không phải là STN ( đpcm )

b) \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3B=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)

\(\Rightarrow2B=1-\frac{1}{3^{99}}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)

\(\Rightarrow B< \frac{1}{2}\left(đpcm\right)\)

20 tháng 12 2018

Ahihi

Nhón ba số đầu với nhau cứ thế cho đến hết

(1+3+3^2)+...+(3^2016+3^2017+3^2018)

=13+...+3^2016(1+3+3^2)

=13+...+3^2016x13

=13(1+...+3^2016)

vì 13 chia hết cho 13 =>13 nhân (1+...+3^2016) chia hết cho 13

Chuẩn không nhớ

20 tháng 12 2018

\(S=1+3^1+3^2+3^3+...+3^{2016}+3^{2017}+3^{2018}.\)

\(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)\)

\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2016}\left(1+3+3^2\right)\)

\(S=13+3^3.13+...+3^{2016}.13\)

\(S=13\left(3^3+...+3^{2016}\right)⋮13\left(đpcm\right)\)

Hok tốt