Cho biểu thức P=(192012+199)/5.CMR P là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chữ ̣số tận cùng của 192012 là 1.
,,,,,1+199 bằng 200 có chữ số tận cùng ;à 0. Suy ra tổng trên chia hết cho 5
số \(19^{2012}\)có chữ số tận cùng là 1.
...1+9 bằng10 <9 là chữ số tận cùng của số 199. và số 10 chỉ lầy cstc bằng 0>
Vì số nào có cstc bằng 0;5 chia hết cho 5. Suy ra B chia hết cho 5 vì B có cstc bằng 0
\(P=\frac{19^{2012}+199}{5}\)CHÚ Ý; NHỮNG SỐ CÓ CHỮ SỐ TẬN CÙNG LÀ 9 KHI MŨ CHẴN THÌ SẼ CÓ TC LÀ 1 ÁP DỤNG VÀO BÀI TA CÓ
\(p=\frac{\left(...1\right)+199}{5}=\frac{\left(...0\right)}{5}\)VÌ TỬ CÓ CSTC LÀ 0 \(\Rightarrow\)TỬ \(⋮\)5
MỘT P/S CÓ TỬ CHIA HẾT CHO MẪU LÀ 1 SỐ NGUYÊN
VẬY......
Ta có: \(\overline{...9}\)^4n=\(\overline{......1}\)
\(\Rightarrow19^{2012}=\overline{...1}\Rightarrow19^{2012}+199=\overline{....0.}\)
Mà \(\overline{.....0}⋮5\Rightarrow\)tử chia hết cho mẫu
\(\Rightarrow P\)là số nguyên (đpcm)
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6=6\left(n+1\right)\)
Vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)⋮6\)\(\forall n\in Z\).
a, -5/n-2 là phân số <=> n-2 khác 0<=> n khác 2 b,-5/n-2 nguyên <=> n-2 thuộc Ư(-5) <=> n-2 thuộc {-5;-1;1;5} <=> n thuộc {-3;1;3;7}
a, NẾu Để A là phân số thì
n - 2 khác 0 => n khác 2
VẬy các số nguyên n khác 2 thì biểu thức A là phân số
b, Để A = -5/n-2 ( mình cứ viết vậy chứ 5 và -5 chẳng khác gì )
LÀ số nguyên thì -5 chia hết cho n -2=> n - 2 thuộc ước -5
-5 có các ước nguyên là -1 ; 1 ; -5 ; 5
(+) n - 2 = -1 => n = 1
(+) n - 2 = 1 => n = 3
(+) n - 2 = -5 => n = -3
(+) n - 2 = 5 => n = 7