K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Xét cấp số nhân (un)(un) có u1=2 và công bội q=3, ta được :        

13122=un=u1.qn−1=2.3n−1<=>n=9

S=S9=u1.q9−1/q−1=2.39−1/3−1=19682

12 tháng 9 2016

39.337+64.337=337.103=337.100+337.3=33700+1011=34711

30 tháng 7 2018

 = \(\frac{4862}{6561}\)

30 tháng 7 2018

KẾT QUẢ BẰNG \(\frac{4862}{6561}\)

29 tháng 7 2018

Cái đoạn mở ngoặc mik viết nhầm nha

20 tháng 9 2020

2/9 + 6/27 + 8/36 + 12/54 + 16/72 + 18/81=\(\frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}\)  = \(\frac{2}{9}\). 6 = \(\frac{12}{9}\)\(\frac{4}{3}\)

20 tháng 9 2020

\(\frac{2}{9}+\frac{6}{27}+\frac{8}{36}+\frac{12}{54}+\frac{16}{72}+\frac{18}{81}\)

\(=\frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}\)

\(=\frac{2}{9}×6=\frac{4}{3}\)

28 tháng 6 2018

a. =(1+10)×10 :2

=11×10:2

=110:2

=55

b. Số các số hạng là =(90-9):9+1= 10

Tổng = (9+90)×10:2=495

29 tháng 7 2018

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{!}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

\(C=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+....+\frac{1}{1024}+\frac{1}{2048}\)

\(\Rightarrow\)\(2C=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}+\frac{1}{1024}\)

\(\Rightarrow\)\(2C-C=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)

\(\Leftrightarrow\)\(C=1-\frac{1}{2048}=\frac{2047}{2048}\)

29 tháng 7 2018

Câu A bạn quên 1/4.5 kìa , với câu D đâu >>>
 

\(\dfrac{1}{4}+\dfrac{1}{10}+\dfrac{1}{18}+\dfrac{1}{28}+\dfrac{1}{40}+\dfrac{1}{54}+\dfrac{1}{70}\)

\(=\left[\dfrac{1}{4}+\dfrac{1}{28}\right]+\left[\dfrac{1}{10}+\dfrac{1}{40}\right]+\left[\dfrac{1}{18}+\dfrac{1}{70}\right]\)

\(=\dfrac{2}{7}+\dfrac{6}{7}+\dfrac{1}{7}\)

\(=\dfrac{9}{7}\)

Chúc bạn học tốt nhé.

23 tháng 1 2017

a)

Vì 2/9=6/27=8/36=12/54=16/72=18/81 nên:

2/9+6/27+8/36+12/54+16/72+18/81=

2/9+2/9+2/9+2/9+2/9+2/9=

2/9*6=

12/9=

4/3

Vậy 2/9+6/27+8/36+12/54+16/72+18/81=4/3

b)

Ta có:

1-2/5=3/5

1-2/7=5/7

1-2/9=7/9

...

1-2/99=97/99

Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=

3/5*5/7*7/9*...*97/99=

(3*5*7*...*97)/(5*7*9*...*99)=

3/99=

1/33

Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=1/33

c)

Gọi biểu thức 1/2+1/4+1/8+1/16+...+1/1024 là S,ta có:

S=1/2+1/4+1/8+1/16+...+1/1024

S*2=1+1/2+1/4+1/8+...+1/512

S*2-S=(1+1/2+1/4+1/8+...+1/512)-(1/2+1/4+1/8+1/16+...+1/1024)

S=1-1/1024

S=1023/1024

Vậy 1/2+1/4+1/8+1/16+...+1/1024=1023/1024

23 tháng 1 2017

Cảm ơn bạn nhé!

15 tháng 5 2023

Kiến thức cần nhớ:

Đấy là dạng tính nhanh phân số mà mẫu nọ gấp một số lần mẫu kia, ta nhân cả hai vế với số lần, trừ vế cho vế, triệt tiêu các hạng tử giống nhau, rút gọn ta được tổng cần tìm.

A                =     \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{18}\) + \(\dfrac{1}{54}\)+...+ \(\dfrac{1}{1458}\)+\(\dfrac{1}{4374}\)

\(\times\) 3         = \(\dfrac{3}{2}\)+\(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{18}\) + \(\dfrac{1}{54}\)+...+ \(\dfrac{1}{1458}\)

\(\times\) 3 - A    =  \(\dfrac{3}{2}\) - \(\dfrac{1}{4374}\)

\(\times\) ( 3  - 1) =  \(\dfrac{6561}{4374}\) - \(\dfrac{1}{4374}\)

\(\times\) 2           =  \(\dfrac{6560}{4374}\)

A  \(\times\) 2          = \(\dfrac{3280}{2187}\)

A                  = \(\dfrac{3280}{2187}\): 2

A                  = \(\dfrac{1640}{2187}\)