K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2021

Khó nhìn quá:))

18 tháng 9 2023

a) \(A=\dfrac{\sqrt[]{x}+2}{\sqrt[]{x}-5}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}-5\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}\ne5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)

Khi \(x=16\Rightarrow A=\dfrac{\sqrt[]{16}+2}{\sqrt[]{16}-5}=\dfrac{4+2}{4-5}=-6\)

b) \(B=\dfrac{3}{\sqrt[]{x}+5}+\dfrac{20-2\sqrt[]{x}}{x-25}\)

B có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x-25\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)

\(\Leftrightarrow B=\dfrac{3\left(\sqrt[]{x}-5\right)+20-2\sqrt[]{x}}{\left(\sqrt[]{x}+5\right)\left(\sqrt[]{x}-5\right)}\)

\(\Leftrightarrow B=\dfrac{3\sqrt[]{x}-15+20-2\sqrt[]{x}}{\left(\sqrt[]{x}+5\right)\left(\sqrt[]{x}-5\right)}\)

\(\Leftrightarrow B=\dfrac{\sqrt[]{x}+5}{\left(\sqrt[]{x}+5\right)\left(\sqrt[]{x}-5\right)}\)

\(\Leftrightarrow B=\dfrac{1}{\sqrt[]{x}-5}\left(dpcm\right)\)

c) \(A=\dfrac{\sqrt[]{x}+2}{\sqrt[]{x}-5}\in Z\left(x\in Z\right)\)

\(\Leftrightarrow\sqrt[]{x}+2⋮\sqrt[]{x}-5\)

\(\Leftrightarrow\sqrt[]{x}+2-\left(\sqrt[]{x}-5\right)⋮\sqrt[]{x}-5\)

\(\Leftrightarrow\sqrt[]{x}+2-\sqrt[]{x}+5⋮\sqrt[]{x}-5\)

\(\Leftrightarrow7⋮\sqrt[]{x}-5\)

\(\Leftrightarrow\sqrt[]{x}-5\in U\left(7\right)=\left\{-1;1;-7;7\right\}\)

\(\Leftrightarrow x\in\left\{16;36;144\right\}\)

d) \(A>B\left(2\sqrt[]{x}+5\right)\)

\(\Leftrightarrow\dfrac{\sqrt[]{x}+2}{\sqrt[]{x}-5}>\dfrac{1}{\sqrt[]{x}-5}\left(2\sqrt[]{x}+5\right)\)

\(\Leftrightarrow\sqrt[]{x}+2>2\sqrt[]{x}+5\)

\(\Leftrightarrow\sqrt[]{x}< -3\)

mà \(\sqrt[]{x}\ge0\)

\(\Leftrightarrow x\in\varnothing\)

2:

b: Khi x=-3 thì (1) sẽ là -3(m-1)+2m+5=0

=>-3m+3+2m+5=0

=>8-m=0

=>m=8

c: Để ptvn thì m-1=0

=>m=1

3 tháng 4 2022

Nếu là câu c 

c, Ta có : BD là phân giác \(\widehat{ABC}\)

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(1\right)\)

Ta có : BK là phân giác \(\widehat{ABH}\)

\(\Rightarrow\dfrac{HK}{AK}=\dfrac{BH}{AB}\left(2\right)\)

Ta có: ΔHBA ~ ΔABC (cmt ) 

(*nếu chưa c/m tam giác đồng dạng thì hãy c/m,  làm r thì khỏi )

\(\Rightarrow\dfrac{HB}{AB}=\dfrac{AB}{AC}\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\dfrac{AD}{DC}=\dfrac{HK}{AK}\)

\(\Rightarrow AK.AD=HK.CD\left(đpcm\right)\)

28 tháng 12 2020

a) Xét ΔABM và ΔACM có 

AB=AC(gt)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

mà tia AM nằm giữa hai tia AB,AC

nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

b) Xét ΔCBN và ΔCDN có 

CB=CD(gt)

\(\widehat{BCN}=\widehat{DCN}\)(CN là tia phân giác của \(\widehat{BCD}\))

CN chung

Do đó: ΔCBN=ΔCDN(c-g-c)

\(\widehat{CNB}=\widehat{CND}\)(hai góc tương ứng)

mà \(\widehat{CNB}+\widehat{CND}=180^0\)(hai góc kề bù)

nên \(\widehat{CNB}=\widehat{CND}=\dfrac{180^0}{2}=90^0\)

hay CN⊥BD(đpcm)

c) Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM⊥BC

Xét ΔABM vuông tại M có 

\(\widehat{ABM}+\widehat{BAM}=90^0\)(hai góc nhọn phụ nhau)(3)

Xét ΔBCN vuông tại N có 

\(\widehat{NBC}+\widehat{BCN}=90^0\)(hai góc nhọn phụ nhau)(4)

Từ (3) và (4) suy ra \(\widehat{BAM}=\widehat{BCN}\)

mà \(\widehat{BAM}=\dfrac{1}{2}\cdot\widehat{BAC}\)(AM là tia phân giác của \(\widehat{BAC}\))

và \(\widehat{BCN}=\dfrac{1}{2}\cdot\widehat{DCB}\)(CN là tia phân giác của \(\widehat{DCB}\))

nên \(\widehat{BAC}=\widehat{DCB}\)(5)

Xét ΔABC có \(\widehat{ECB}\) là góc ngoài tại đỉnh C

nên \(\widehat{ECB}=\widehat{ABC}+\widehat{BAC}\)(Định lí góc ngoài của tam giác)(6)

Xét ΔBDC có \(\widehat{ADC}\) là góc ngoài tại đỉnh D

nên \(\widehat{ADC}=\widehat{DBC}+\widehat{DCB}\)(Định lí góc ngoài của tam giác)

hay \(\widehat{ADC}=\widehat{ABC}+\widehat{DCB}\)(7)

Từ (5), (6) và (7) suy ra \(\widehat{ECB}=\widehat{ADC}\)

Xét ΔBCE và ΔCDA có 

BC=CD(gt)

\(\widehat{ECB}=\widehat{ADC}\)(cmt)

CE=DA(gt)

Do đó: ΔBCE=ΔCDA(c-g-c)

⇒BE=CA(hai cạnh tương ứng)

mà BA=CA(gt)

nên BA=BE(đpcm)

4 tháng 11 2021

?

4 tháng 11 2021

??

7:

a: a>b

=>a+2>b+2

b: a>b

=>a-2>b-2

c: a>b

=>2*a>2b

d: a>b

=>-2a<-2b