K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

Gọi giao điểm cua BP và AR là S

Xét tam giác BPH có:

BH=PH(giả thiết)

 góc BHP=90"(vì AH là đường cao)

=>tam giác BHP vuông cân tại H=>góc BPH=45'=>góc APS=45"   (1)

Tương tự ta cũng có tam giác AHR vuông cân tại H=>góc HAS=45"  (2)

Cộng từng về của (1) và (2) =>góc ASP=90"

Hay BP vông góc với AR

Xét tam giác BAR có

BP vuông góc với AR(cmt)

AH vuông góc Với BC(giả thiết)

BP cắt AH tại P=>P là trực tâm của tam giác BAR

17 tháng 5 2018

Hình vẽ: https://imgur.com/4l52wae

Giải:

Gọi G là gio điểm của BP và AR

Góc AHR = 90 độ mà HA = HR nên tam giác HAR vuông cân tại H => góc HAR = góc HRA = 45 độ

Góc PHB = 90 độ mà HP = HB nên tam giác HPB vuông cân tại H => góc HPB = góc HBP = 45 độ

Mà góc APG = góc HPB (đối đỉnh) nên góc APG = 45 độ

=> góc AGP = 180 - 45 - 45 = 90 (độ) 

=> BG là đường cao của tm giác ABR 

Mà BG cắt AH tại P nên P là trực tâm tam giác BAR

a, Xét ∆AHC và ∆DHC có:

+CH chung

+\(\widehat{CHA}=\widehat{CHD}\left(=90^o\right)\)

+HA=HC(gt)

\(\Rightarrow\)∆HCA=∆HCD(ch-cgv)

 

19 tháng 7 2023

A B C H D E K

a/ Xét tg vuông AHC và tg vuông DHC có

HC chung

HA = HD (gt)

=> tg AHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông bằng nhau)

b/ K là giao của AE và CD

Xét tg vuông ABC có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với góc \(\widehat{ABC}\) ) (1)

tg AHC = tg DHC (cmt) => \(\widehat{DCH}=\widehat{ACB}\) (2)

Xét tg vuông ABH và tg vuông AEH có

AH chung; HB = HE (gt) => tg ABH = tg AEH (hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{BAH}=\widehat{EAH}\) (3)

Từ (1) (2) (3) => \(\widehat{EAH}=\widehat{DCH}\) (4)

Xét tg vuông AHE có

\(\widehat{EAH}+\widehat{AEH}=90^o\) (5)

Mà \(\widehat{AEH}=\widehat{CEK}\) (góc đối đỉnh) (6)

Từ (4) (5) (6) \(\Rightarrow\widehat{DCH}+\widehat{CEK}=90^o\Rightarrow\widehat{AKC}=90^o\)

\(\Rightarrow AK\perp CD\) mà \(CH\perp AD\) => E là trực tâm của tg ADC 

c/

tg ABH = tg AEH (cmt) => AB = AE

tg AHC = tg DHC (cmt) => AC = CD

Xét tg ABC có

\(AB+AC>BC\) (trong tg tổng độ dài 2 cạnh lớn hớn độ dài cạnh còn lại)

\(\Rightarrow AE+CD>BC\)