K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

Gọi giao điểm cua BP và AR là S

Xét tam giác BPH có:

BH=PH(giả thiết)

 góc BHP=90"(vì AH là đường cao)

=>tam giác BHP vuông cân tại H=>góc BPH=45'=>góc APS=45"   (1)

Tương tự ta cũng có tam giác AHR vuông cân tại H=>góc HAS=45"  (2)

Cộng từng về của (1) và (2) =>góc ASP=90"

Hay BP vông góc với AR

Xét tam giác BAR có

BP vuông góc với AR(cmt)

AH vuông góc Với BC(giả thiết)

BP cắt AH tại P=>P là trực tâm của tam giác BAR

17 tháng 5 2018

Hình vẽ: https://imgur.com/4l52wae

Giải:

Gọi G là gio điểm của BP và AR

Góc AHR = 90 độ mà HA = HR nên tam giác HAR vuông cân tại H => góc HAR = góc HRA = 45 độ

Góc PHB = 90 độ mà HP = HB nên tam giác HPB vuông cân tại H => góc HPB = góc HBP = 45 độ

Mà góc APG = góc HPB (đối đỉnh) nên góc APG = 45 độ

=> góc AGP = 180 - 45 - 45 = 90 (độ) 

=> BG là đường cao của tm giác ABR 

Mà BG cắt AH tại P nên P là trực tâm tam giác BAR

17 tháng 5 2018

Gọi giao điểm của BP với AR là I

+, Xét tam giác HBP vuông cân tại H và tam giác HAR vuông cân tại H ta có:

\(\widehat{BPH}=\widehat{RAH}=45^o\) (theo tính chất của tam giác vuông cân)

\(\widehat{BPH}=\widehat{API}\left(d.d\right)\) \(\Rightarrow\widehat{API}=45^o\)

+, Xét tam giác API ta có:

\(\widehat{AIP}=180^o-\widehat{IAP}-\widehat{IPA}=180^o-45^o-45^o=90^o\)

(theo tính chất tổng 3 góc trong tam giác)

\(\Rightarrow BP\perp AR=\left\{I\right\}\)

Mặt khác \(BI\cap AH=\left\{P\right\}\)

Do đó P là trực tâm tam giác ABR(đpcm)

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.3/ Cho tam giác nhọn ABC. H là trực tâm:CMR: a) HA+HB+HC<AB+AC           b)...
Đọc tiếp

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.

2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.

3/ Cho tam giác nhọn ABC. H là trực tâm:

CMR: a) HA+HB+HC<AB+AC

           b) HA+HB+HC<\(\frac{2}{3}\)(AB+BC+CA)

4/ Cho \(\Delta ABC\) vuông tại A. Gọi I là giao điểm của các đường phân giác ABC. Vẽ \(ID\perp AB\) tại D. CMR AB+AC-BC=2ID

5/ Cho \(\Delta ABC\) vuông tại A. AH là đường cao. Gọi I,K,S lần lượt là giao điểm các đường phân giác của \(\Delta ABC\)\(\Delta ABH\)\(\Delta ACH\). Vẽ \(II'\perp BC\) tại I', \(KK'\perp BC\) tại K', \(SS'\perp BC\) tại S'. CMR: SS'+II'+KK'=HA

0
5 tháng 5 2017

A B C D H I P Q

a) Xét \(\Delta\)AHC: ^AHC=90\(^0\)và AH=HC => \(\Delta\)AHC vuông cân tại H 

 => ^HAC=^HCA=45\(^0\)hay ^DCB=45\(^0\)(1)

  Xét \(\Delta\)BHI: ^BHI=90\(^0\)và HB=HI => \(\Delta\)BHI vuông cân tại H

=> ^HBI=^HIB=45\(^0\)hay ^DBC=45\(^0\)(2)

Từ (1) và (2) => ^DCB=^DBC=45\(^0\)=> \(\Delta\)BDC vuông cân tại D

=> BD \(⊥\)AC hay IB \(⊥\)AC tại D (đpcm)

 => BD là đường cao của \(\Delta\)ABC

 AH cũng là đường cao của \(\Delta\)ABC . Mà BD gia AH tại I => I là trọng tâm của \(\Delta\)ABC

b) Nối điểm H với 2 điểm P và Q

Q là trung điểm của AC => HQ là trung tuyến của \(\Delta\)AHC. Mà \(\Delta\)AHC vuông cân

=> HQ đồng thời là đường cao của \(\Delta\)AHC=> HQ \(⊥\)AC .Mà BD \(⊥\)AC

=> HQ // BD hay HQ // PD (P thuộc BD) (Quan hệ song song vuông góc)

Tương tự: P là trung điểm của BI và \(\Delta\)BHI vuông cân tại H

=> HP là đường cao của \(\Delta\)BHI => HP\(⊥\)BD. Mà DC\(⊥\)BD tại D => HP//DC (Quan hệ song song vuông góc)

=> HP//DQ (Q thuộc  DC)

Ta có: HQ//PD và HP//DQ => HQ=PD và HP=DQ (Tính chất đoạn chắn)

Lại có: HQ đồng thời là đường phân giác của \(\Delta\)AHC=> ^QHA=^QHC=^AHC/2=90\(^0\)/2=45\(^0\)

Mà ^QCH=45\(^0\)=> ^QHC=^QCH=45\(^0\)=> \(\Delta\)HQC vuông cân tại Q => QC=HQ (3)

Tương tự với \(\Delta\)BHI có: \(\Delta\)BHP vuông cân tại P=> PH=BP (4)

Ta có: PD+BP=BD (5) 

Thế (3) và (4) vào (5), ta có: QC+PH=BD (đpcm) 

k cho mk nhé!