Cho tam giác ABC vuông tại B có góc ACB = 30 độ. Tia phân giác của A cắt cạnh BC tại D . Lấy điểm E trên AC sao cho AB = AE .
1) Tính góc ADB
2) Chứng minh rằng tam giác BDA = tam giác EDA
3) Chứng minh rằng DA=DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC có góc B = 900, góc ACB = 300.
Suy ra góc A = 1800 - góc B - góc ACB = 180 - 90 - 30 = 600.
Mà AD là tia phân giác của góc A -> góc DAB=góc DAE = góc A / 2 = \(\frac{60^0}{2}=30^0\)
mà góc ABD bằng 900 -> góc ADB = 1800-900-300=600.
Vậy góc ADB bằng 600.
b) Xét hai tam giác BDA và tam giác EDA có :
AB = AE (GT)
góc BAD = góc EAD (cmt)
AD chung
Từ ba điều trên suy ra : tam giác BDA = tam giác EDA.
c) Ta có : góc DAE bằng = 300 (cmt)
mà góc ACB bằng 300 (GT)
Từ hai điều trên suy ra tam giác DAC cân tại D.
-> DA = DC (đpcm).
a: Xét ΔBAM và ΔBDM có
BA=BD
\(\widehat{ABM}=\widehat{DBM}\)
BM chung
Do đó: ΔBAM=ΔBDM
=>\(\widehat{BAM}=\widehat{BDM}\)
mà \(\widehat{BAM}=90^0\)
nên \(\widehat{BDM}=90^0\)
b: Ta có; ΔBAM=ΔBDM
=>MA=MD
Xét ΔMAE vuông tại A và ΔMDC vuông tại M có
MA=MD
AE=DC
Do đó: ΔMAE=ΔMDC
=>\(\widehat{AME}=\widehat{DMC}\)
mà \(\widehat{AME}+\widehat{EMC}=180^0\)(hai góc kề bù)
nên \(\widehat{DMC}+\widehat{EMC}=180^0\)
=>\(\widehat{DME}=180^0\)
=>D,M,E thẳng hàng
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: DA=DM
=>góc DAM=góc DMA
a, xét tam giác ABM và tam giác KBM có: AB=BK, BM chung, góc ABM= góc KBM
suy ra 2 tam giác trên bằng nhau
hok tốt
tu ve hinh :
xet tamgiac ABM va tamgiac KBM co : MB chung
goc ABM = goc MBK do BM la phan giac cua goc ABC (gt)
AB = AK (gt)
=> tammgiac ABM = tamgiac KBM (c - g - c)
Answer:
1) \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}=60^o\)
AD là phân giác của góc A nên: Góc BAD = góc DAC = \(\frac{\widehat{A}}{2}=30^o\)
\(\Rightarrow\widehat{ADB}=180^o-\widehat{B}-\widehat{BAD}=60^o\)
2) Xét tam giác BDA và tam giác EDA:
Góc BAD = góc DAE
AB = AE
DA là cạnh chung
=> Tam giác BDA = tam giác EDA
3) Xét tam giác ADC:
Góc DAC = góc DCA = 30 độ
=> Tam giác ADC cân tại D hay DA = DC