Tìm 1 số tự nhiên có tử bé hờn mẫu là 3 đơn vị. Nếu đổi 2 chữ số đó cho nhau thì đc số mới lớn hơn số cũ là 36 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chữ số hàng đơn vị là x ( ĐK: \(x\in N,0< x\le9\))
Khi đó chữ số hàng chục là (10-x).
Số cần tìm là \(\overline{\left(10-x\right)x}\), số mới là \(\overline{x\left(10-x\right)}\)
Từ đó ta có phương trình: \(\overline{x\left(10-x\right)}-\overline{\left(10-x\right)x}=36\Rightarrow10x+10-x-10\left(10-x\right)-x=36\)
\(\Leftrightarrow x=7\)
Vậy số cần tìm là 37.
1)số bé nhất có 3 chữ số khác nhau là:102
Tử số là:(102-72)÷2=15
Mẫu số là:102-15=87
Vậy phân số đó là 15/87
2)gọi số đó là a0, ta có:
A0=a+1809
A×10=a+1809
A×10-a=1809
A×9=1809
A=1809÷9
A=201
Vậy số đó là 2010(thêm 0)
1/
Số cần tìm \(\overline{ab7}\) theo đề bài
\(\overline{7ab}=2.\overline{ab7}+21\)
\(\Rightarrow700+\overline{ab}=20.\overline{ab}+14+21\)
\(\Leftrightarrow19.\overline{ab}=665\Rightarrow\overline{ab}=665:19=35\)
Số cần tìm là 357
2/
Gọi số cần tìm là \(\overline{ab}\) theo đề bài
\(\overline{ba}-\overline{ab}=63\)
\(10.b+a-10.a-b=63\)
\(9.\left(b-a\right)=63\Rightarrow b-a=7\)
\(a=\left(9-7\right):2=1\)
\(\Rightarrow b=9-a=9-1=8\)
Số cần tìm là 18
Bài 1: Gọi số đó là: \(\overline{ab5}\)
Ta có: \(\overline{5ab}-\overline{ab5}=288\)
\(\Leftrightarrow500+\overline{ab}-\left(10.\overline{ab}+5\right)=288\)
\(\Leftrightarrow500+\overline{ab}-10.\overline{ab}-5=288\)
\(\Leftrightarrow\left(500-5\right)-\left(10.ab-\overline{ab}\right)\)=288
\(\Leftrightarrow495-9.\overline{ab}=288\)
\(\Leftrightarrow9.\overline{ab}=495-288=207\)
\(\Leftrightarrow\overline{ab}=207:9=23\)
\(\Rightarrow\) số cần tìm là 23.
Bài 3: Gọi số cần tìm là \(\overline{ab}\)
Ta có: \(\overline{ab}+18=\overline{ba}\)
\(\Leftrightarrow10a+b+18=10b+a\)
\(\Leftrightarrow\left(10a-a\right)+18=10b-b\)
\(\Leftrightarrow9a+18=9b\)
\(\Leftrightarrow9\left(a+2\right)=9b\)
\(\Rightarrow a+2=b\)
\(\Rightarrow b=\left(8+2\right):2=5\)
\(\Rightarrow a=8-5=3\)
Vậy: số cần tìm là: \(35\)
Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))
Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)
Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)
\(\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow-9a+9b=36\)
\(\Leftrightarrow a-b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 59
Gọi số tự nhiên đó là ab(ab>14). Theo đề bài ta có:
Chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 đơn vị nên ta có phương trình: \(-a+b=4\left(1\right)\)
Nếu đổi chỗ 2 chữ số cho nhau thì được số mới bằng \(\dfrac{17}{5}\) số cũ nên ta có phương trình: \(ba-ab=\dfrac{17}{5}\Leftrightarrow10b+a-10a-b=\dfrac{17}{5}\Leftrightarrow9b-9a=\dfrac{17}{5}\Leftrightarrow-45a+45b=17\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=4\\-45a+45b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-45a+45b=180\left(3\right)\\-45a+45b=17\left(2\right)\end{matrix}\right.\) Trừ từng vế của (3) cho (2) ta được:
\(\Rightarrow0a+0b=180-17=163\) Vô lí \(\Rightarrow\) Ko có a,b
Vậy ko tồn tại số tự nhiên thỏa mãn đề bài
gọi số cần tìm là \(\overline{xy}\)
ta có hệ
\(\hept{\begin{cases}5x-y=12\\\left(10y+x\right)-\left(10x+y\right)=36\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5x-y=12\\-9x+9y=36\end{cases}=>\hept{\begin{cases}45x-9y=108\\-45x+45y=180\end{cases}=>\hept{\begin{cases}36y=288\\5x-y=12\end{cases}=>\hept{\begin{cases}y=8\\5x=20\end{cases}}}}}\)
\(\Rightarrow\hept{\begin{cases}y=8\\x=4\end{cases}}\)
zậy số cần tìm là 48
Số tự nhiên thì thì ghi tử với mẫu làm gì hả bạn?
Nếu là tìm phân số thì làm như sau:
Lời giải:
Gọi phân số cần tìm là $\frac{a}{b}$ với $a,b$ là STN và $b\neq 0;3$
Theo bài ra ta có: $a=b-3$
$\frac{b}{a}-\frac{a}{b}=36$
$\Leftrightarrow \frac{b}{b-3}=\frac{b-3}{b}=36$
$\Leftrightarrow \frac{b^2-(b-3)^2}{b(b-3)}=36$
$\Leftrightarrow \frac{6b-9}{b(b-3)}=36$
$\Leftrightarrow \frac{2b-3}{b(b-3)}=12$
$\Rightarrow 2b-3=12b(b-3)$
$\Leftrightarrow 12b^2-38b+3=0$
$\Rightarrow b=\frac{19+5\sqrt{13}}{12}$ (vô lý quá!!!)
Bạn xem lại đề.