Tìm nϵN để :
\(n^2+3n+5:n+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
An và Bình cùng đếm số trái cây mình có, An nói: “Nếu cậu cho mình 4 trái thì 2 tụi mình sẽ có số trái cây bằng nhau”. Bình nói lại với An: “Còn nếu cậu cho mình 2 trái thì số trái cây của tớ sẽ gấp 4 lần cậu”. Hỏi mỗi bạn có bao nhiêu trái
\(1\le3^{n+2}\le729\)
\(\Rightarrow3^0\le3^{n+2}\le3^6\)
\(\Rightarrow0\le n+2\le6\)
\(\Rightarrow0-2\le n\le6-2\)
\(\Rightarrow-2\le n\le4\)
Mà: \(n\in N^+\)
\(\Rightarrow0\le n\le4\)
\(\Rightarrow n\in\left\{0;1;2;3;4\right\}\)
Sửa đề:
1 ≤ 3ⁿ⁺² ≤ 729
3⁰ ≤ 3ⁿ⁺² ≤ 3⁶
0 ≤ n + 2 ≤ 6
-2 ≤ n ≤ 4
Do n ∈ ℕ
⇒ n ∈ {0; 1; 2; 3; 4}
Ta có:
15n - 3 = 15n - 10 + 7 = 5(3n - 2) + 7
Để (15n - 3) ⋮ (3n - 2) thì 7 ⋮ (3n - 2)
⇒ 3n - 2 ∈ Ư(7) = {-7; -1; 1; 7}
⇒ 3n ∈ {-5; 1; 3; 9}
⇒ n ∈ {-5/3; 1/3; 1; 3}
Mà n ∈ ℕ
⇒ n = 1; n = 3
Lời giải:
$12n-3\vdots 3n-2$
$\Rightarrow 4(3n-2)+5\vdots 3n-2$
$\Rightarrow 5\vdots 3n-2$
$\Rightarrow 3n-2\in\left\{1; -1;5;-5\right\}$
$\Rightarrow n\in\left\{1; \frac{1}{3}; \frac{7}{3}; -1\right\}$
Vì $n\in\mathbb{N}$ nên $n=1$
Ta có:
12n - 3 = 12n - 8 + 5 = 4(3n - 2) + 5
Để (12n - 3) ⋮ (3n - 2) thì 5 ⋮ (3n - 2)
⇒ 3n - 2 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ 3n ∈ {-3; 1; 3; 7}
⇒ n ∈ {-1; 1/3; 1; 7/3}
Mà n ∈ ℕ
⇒ n = 1
gọi ƯC(2n+5 và 3n+7) = d
3(2n+5) , 2(3n+7) chia hết cho d
-> [3(2n+5) - 2(3n+7)] chia hết cho d
-> 1 chia hết cho d
d = 1 -> 2n +5 và 3n+7 nguyên tố cùng nhau
1. a) Gọi a là ƯCLN của 2n+5 và n+3.
- Ta có: (n+3)⋮a
=>(2n+6)⋮a
Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a
=>1⋮a
=>a=1 hay a=-1.
- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.
b) -Để phân số B có giá trị là số nguyên thì:
\(\left(2n+5\right)⋮\left(n+3\right)\)
=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)
=>\(-1⋮\left(n+3\right)\).
=>\(n+3\inƯ\left(-1\right)\).
=>\(n+3=1\) hay \(n+3=-1\).
=>\(n=-2\) (loại) hay \(n=-4\) (loại).
- Vậy n∈∅.
1. a) Gọi `(2n +5 ; n + 3 ) = d`
`=> {(2n+5 vdots d),(n+3 vdots d):}`
`=> {(2n+5 vdots d),(2(n+3) vdots d):}`
`=> {(2n+5 vdots d),(2n+6 vdots d):}`
Do đó `(2n+6) - (2n+5) vdots d`
`=> 1 vdots d`
`=> d = +-1`
Vậy `(2n+5)/(n+3)` là phân số tối giản
b) `B = (2n+5)/(n+3)` ( `n ne -3`)
`B = [2(n+3) -1]/(n+3)`
`B= [2(n+3)]/(n+3) - 1/(n+3)`
`B= 2 - 1/(n+3)`
Để B nguyên thì `1/(n+3)` có giá trị nguyên
`=> 1 vdots n+3`
`=> n+3 in Ư(1) = { 1 ; -1}`
+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)
+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)
Vậy `n in { -2; -4}` thì `B` có giá trị nguyên
2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)
Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)
Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)
Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)` (học sinh)
Vì số học sinh của lớp `6A` không đổi nên ta có :
`7/3x + x = 3/2 (x+4) + x+4`
`=> 10/3 x = 3/2 x + 6 + x + 4`
`=> 10/3 x - 3/2 x -x = 10 `
`=> 5/6x = 10`
`=> x=12` (thỏa mãn điều kiện)
`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh
`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh
`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)
Vậy lớp `6A` có `40` học sinh
\(\Leftrightarrow n^2+n+2n+2+3⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;3\right\}\)
hay \(n\in\left\{0;2\right\}\)
$(n^2+3n+5)\vdots (n+1)$
$\to (n^2+n+2n+2+3)\vdots (n+1)$
$\to [n(n+1)+2(n+1)+3]\vdots (n+1)$
$\to n+1\in Ư(3)=\left\{-3;-1;1;3\right\}$
$\to n\in \left\{-4;-2;0;2\right\}$
Mà $n\in \mathbb{N}$
$\to n\in \left\{0;2\right\}$