có hai số vô tỉ dương nào mà tổng là số hữu tỉ ko ?
ai lam hộ mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có. Ví dụ: m - căn a và n + căn a: 3 - căn 2 và 4 + căn 2 chẳng hạn.
3.
Ta có x= [x] + a (với 0<a<1)
y = [y] + y (với 0<b<1)
TH1: a +b < 1 => [x + y] = [ [x] + [y] + a+b] = [x] + [y]
TH2: a+b >=1 => [x + y] = [ [x] + [y] + a+b] = [x] + [y] + 1 > [x] + [y]
Kết hợp lại => dpcm
cho bạn 1 bộ như vậy nè: \(2-\sqrt{2}\)và \(2+\sqrt{2}\)
Hai số đó là vô tỷ nhưng cộng lại thành 4 là số hữu tỷ đấy. Cứ như vậy thì tìm được vô số bộ số thỏa mãn thôi
a/ Có. Ví dụ: (3 - √3) và (2 + √3) là hai số vô tỉ dương, nhưng (3 - √3) + (2 + √3) = 5 là một số hữu tỉ.
giả sử tổng của số hữu tỉ a vs số vô tỉ b là số hữu tỉ c, ta có b=c-a
mà hiệu của 2 số hữu tỉ phải là số hữu tỉ nên b là số hữu tỉ => mâu thuẫn vs giả thiết
vậy tổng của 1 số hữu tỉ với 1 số vô tỉ là 1 số vô tỉ.
giả sử tổng của số hữu tỉ a vs số vô tỉ b là số hữu tỉ c, ta có b=c-a
mà hiệu của 2 số hữu tỉ phải là số hữu tỉ nên b là số hữu tỉ => mâu thuẫn vs giả thiết
vậy tổng của 1 số hữu tỉ với 1 số vô tỉ là 1 số vô tỉ.
giả sử tổng của số hữu tỉ a vs số vô tỉ b là số hữu tỉ c, ta có b=c-a
mà hiệu của 2 số hữu tỉ phải là số hữu tỉ nên b là số hữu tỉ => mâu thuẫn vs giả thiết
vậy tổng của 1 số hữu tỉ với 1 số vô tỉ là 1 số vô tỉ.
VD : (6+√55) + (6-√55)=12
Có. Ví dụ: (3 - √3) và (2 + √3) là hai số vô tỉ dương, nhưng (3 - √3) + (2 + √3) = 5 là một số hữu tỉ.