K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2016

Ta có (a+b)>=0 => a+ 2ab + b>= 0 => a2 + b>= 2ab. (1)

         (b+c)>=0 => b+ 2bc + c>= 0 => b2 + c>= 2bc. (2)

         (c+a)>=0 => c+ 2ca + a>= 0 => c2 + a>= 2ca. (3)

Cộng (1), (2), (3), theo vế ta có 2(a2 + b2 + c2)>=2(ab+bc+ca)

suy ra a2 + b2 + c2>=ab+bc+ca (*)

Áp dụng bất đẳng thức trong tam giác ta có:

a+b>c => ac+bc>c2. (4)

b+c>a => ab+ac>a2. (5)

c+a>b => bc+ab>b2. (6)

Cộng (4), (5), (6) theo vế ta có 2(ab+bc+ca)>a2+b2+c2(**)

Từ (*) và (**) suy ra đpcm.

ai tích mk mk tích lại ) thề

25 tháng 4 2016

Ta có (a+b)>=0 => a+ 2ab + b>= 0 => a2 + b>= 2ab. (1)

         (b+c)>=0 => b+ 2bc + c>= 0 => b2 + c>= 2bc. (2)

         (c+a)>=0 => c+ 2ca + a>= 0 => c2 + a>= 2ca. (3)

Cộng (1), (2), (3), theo vế ta có 2(a2 + b2 + c2)>=2(ab+bc+ca)

suy ra a2 + b2 + c2>=ab+bc+ca (*)

Áp dụng bất đẳng thức trong tam giác ta có:

a+b>c => ac+bc>c2. (4)

b+c>a => ab+ac>a2. (5)

c+a>b => bc+ab>b2. (6)

Cộng (4), (5), (6) theo vế ta có 2(ab+bc+ca)>a2+b2+c2(**)

Từ (*) và (**) suy ra đpcm.

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

25 tháng 7 2016

Ta sẽ chứng minh bằng biến đổi tương đương như sau : 

Ta có ; \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

Vì bđt cuối luôn đúng nên bđt ban đầu được cm.

1 tháng 6 2019

Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2-2ab\ge0\Rightarrow a^2+b^2\ge2ab\)

\(\left(a-c\right)^2\ge0\Rightarrow a^2+c^2-2ac\ge0\Rightarrow a^2+c^2\ge2ac\)

\(\left(b-c\right)^2\ge0\Rightarrow b^2+c^2-2bc\ge0\Rightarrow b^2+c^2\ge2bc\)

\(a^2+b^2+a^2+c^2+b^2+c^2\ge2ab+2ac+2bc\)

\(2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)

\(a^2+b^2+c^2\ge ab+ac+bc\)(đpcm)

21 tháng 3 2016

(a-b)^2 >= 0 => a^2+b^2-2ab>=0  => a^2+b^2>=2ab (1)

cm tương tự ta được b^2 + c^2 >= 2bc  (2) ; c^2 + a^2>=2ac  (3);

từ (1). (2), (3)  ta được 2(a^2+b^2+c^2) >= 2ab + 2bc + 2ac

           => a^2 + b^2 + c^2 >= ab + bc +ca (đpcm)

21 tháng 3 2016

Ta có a2 + b2 + c>= ab+bc+ac

\(\Leftrightarrow\) a2 + b2 +c-ab-bc-ac>= 0

\(\Leftrightarrow\) 2a+ 2b2+2c2-2ab-2ac-2bc >=0

\(\Leftrightarrow\) (a-b)+(a-c)+(b-c)>=0( luôn đúng)

Vậy.... Dấu "=" xảy ra khi a=b=c

18 tháng 8 2017

dề sai kìa thế này mới đúng  \(a^2+b^2+c^2\ge ab+bc+ca\)

áp dung BĐT co6si ta có

\(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+a^2\ge2ca\)

cộng vế với vế có

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

chia 2 vế cho 2 suy ra (dpcm)

18 tháng 8 2017

này ; là j