K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2016

(a-b)^2 >= 0 => a^2+b^2-2ab>=0  => a^2+b^2>=2ab (1)

cm tương tự ta được b^2 + c^2 >= 2bc  (2) ; c^2 + a^2>=2ac  (3);

từ (1). (2), (3)  ta được 2(a^2+b^2+c^2) >= 2ab + 2bc + 2ac

           => a^2 + b^2 + c^2 >= ab + bc +ca (đpcm)

21 tháng 3 2016

Ta có a2 + b2 + c>= ab+bc+ac

\(\Leftrightarrow\) a2 + b2 +c-ab-bc-ac>= 0

\(\Leftrightarrow\) 2a+ 2b2+2c2-2ab-2ac-2bc >=0

\(\Leftrightarrow\) (a-b)+(a-c)+(b-c)>=0( luôn đúng)

Vậy.... Dấu "=" xảy ra khi a=b=c

21 tháng 10 2017

Ta có: \(a^2 + b^2 + c^2 = ab + ac + bc \)

\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 = 2ab + 2ac + 2bc\)

\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 - 2ab -2ac - 2bc = 0\)

\(\Leftrightarrow (a^2 - 2ab +b^2) + (a^2 - 2ac + c^2) + (b^2 - 2bc +c^2) = 0\)

\(\Leftrightarrow (a - b)^2 + (a-c)^2 + (b-c)^2 = 0\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\) \(\Leftrightarrow\) \(a=b=c\)

21 tháng 10 2017

Những hằng đẳng thức đáng nhớ

5 tháng 4 2016

Giả sử:

2a^2 + 2b^2 + 2c^2 > hoặc = 2ab + 2ac + 2bc

<=>( a^2 -2ab + b^2) + (a^2 -2ac + c^2)+(b^2 -2bc + c^2) > hoặc = 0

=<=>(a-b)^2 + (a-c)^2 + (b-c)^2 > hoặc = 0 ( BĐT luôn đúng ) => 2a^2 + 2b^2 + 2c^2 >hoặc = 2ab + 2ac + 2bc là đúng ! <=> a^2 + b^2 + c^2 > hoặc = ab+bc+ac.

Dấu = xảy ra khi : a=b=c

25 tháng 12 2016

Ta có \(a^2+b^2+c^2+ab+bc+ac\ge6\)

\(=>2\left(a^2+b^2+c^2+ab+bc+ac\right)\ge12\)

\(=>2a^2+2b^2+2c^2+2ab+2bc+2ac\ge12\)

\(=>a^2+b^2+c^2+a^2+b^2+c^2+2ab+2bc+2ac\ge12\)

Do \(a+b+c=3\)

\(=>\left(a+b+c\right)^2=9\\ =>a^2+b^2+c^2+2ab+2bc+2ac=9\)

Thế vào biểu thức \(a^2+b^2+c^2+a^2+b^2+c^2+2ab+2bc+2ac\ge12\)

Ta có \(a^2+b^2+c^2+9\ge12\)

\(=>a^2+b^2+c^2\ge3\) (1)

Ta có \(\begin{cases}a^2+b^2+c^2+2ab+2bc+2ac=9\\a^2+b^2+c^2+ab+bc+ac\ge6\end{cases}\)

\(=>\left(a^2+b^2+c^2+2ab+2bc+2ac\right)-\left(a^2+b^2+c^2+ab+ac+bc\right)\ge3\)

\(=>\left(2ab+2ac+2bc\right)-\left(ab+ac+bc\right)\ge3\)

\(=>ab+bc+ac\ge3\) (2)

Từ (1) và (2)

\(=>a^2+b^2+c^2+ab+bc+ac\ge6\)

 

21 tháng 10 2017

Ta có :

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Rightarrow2a^2+2b^2+2c^2-\left(2ab+2ac+2bc\right)=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Rightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\)hoặc (a - b)2=0 hoặc (b - c)2=0 hoặc (c - a)2=0 \(\Leftrightarrow\)a - b = 0 hoặc b - c = 0 hoặc c - a = 0\(\Leftrightarrow\)a = b; b = c; c = a (1)

Từ (1)

\(\Rightarrow\)a = b = c

21 tháng 10 2017

nói hoặc là sai rồi vì 3 trường hợp này xảy ra trong 1 đẳng thức