K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2016

Ta có (a+b)>=0 => a+ 2ab + b>= 0 => a2 + b>= 2ab. (1)

         (b+c)>=0 => b+ 2bc + c>= 0 => b2 + c>= 2bc. (2)

         (c+a)>=0 => c+ 2ca + a>= 0 => c2 + a>= 2ca. (3)

Cộng (1), (2), (3), theo vế ta có 2(a2 + b2 + c2)>=2(ab+bc+ca)

suy ra a2 + b2 + c2>=ab+bc+ca (*)

Áp dụng bất đẳng thức trong tam giác ta có:

a+b>c => ac+bc>c2. (4)

b+c>a => ab+ac>a2. (5)

c+a>b => bc+ab>b2. (6)

Cộng (4), (5), (6) theo vế ta có 2(ab+bc+ca)>a2+b2+c2(**)

Từ (*) và (**) suy ra đpcm.

ai tích mk mk tích lại ) thề

25 tháng 4 2016

Ta có (a+b)>=0 => a+ 2ab + b>= 0 => a2 + b>= 2ab. (1)

         (b+c)>=0 => b+ 2bc + c>= 0 => b2 + c>= 2bc. (2)

         (c+a)>=0 => c+ 2ca + a>= 0 => c2 + a>= 2ca. (3)

Cộng (1), (2), (3), theo vế ta có 2(a2 + b2 + c2)>=2(ab+bc+ca)

suy ra a2 + b2 + c2>=ab+bc+ca (*)

Áp dụng bất đẳng thức trong tam giác ta có:

a+b>c => ac+bc>c2. (4)

b+c>a => ab+ac>a2. (5)

c+a>b => bc+ab>b2. (6)

Cộng (4), (5), (6) theo vế ta có 2(ab+bc+ca)>a2+b2+c2(**)

Từ (*) và (**) suy ra đpcm.

21 tháng 3 2016

(a-b)^2 >= 0 => a^2+b^2-2ab>=0  => a^2+b^2>=2ab (1)

cm tương tự ta được b^2 + c^2 >= 2bc  (2) ; c^2 + a^2>=2ac  (3);

từ (1). (2), (3)  ta được 2(a^2+b^2+c^2) >= 2ab + 2bc + 2ac

           => a^2 + b^2 + c^2 >= ab + bc +ca (đpcm)

21 tháng 3 2016

Ta có a2 + b2 + c>= ab+bc+ac

\(\Leftrightarrow\) a2 + b2 +c-ab-bc-ac>= 0

\(\Leftrightarrow\) 2a+ 2b2+2c2-2ab-2ac-2bc >=0

\(\Leftrightarrow\) (a-b)+(a-c)+(b-c)>=0( luôn đúng)

Vậy.... Dấu "=" xảy ra khi a=b=c

21 tháng 10 2017

Ta có: \(a^2 + b^2 + c^2 = ab + ac + bc \)

\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 = 2ab + 2ac + 2bc\)

\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 - 2ab -2ac - 2bc = 0\)

\(\Leftrightarrow (a^2 - 2ab +b^2) + (a^2 - 2ac + c^2) + (b^2 - 2bc +c^2) = 0\)

\(\Leftrightarrow (a - b)^2 + (a-c)^2 + (b-c)^2 = 0\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\) \(\Leftrightarrow\) \(a=b=c\)

21 tháng 10 2017

Những hằng đẳng thức đáng nhớ

5 tháng 4 2016

Giả sử:

2a^2 + 2b^2 + 2c^2 > hoặc = 2ab + 2ac + 2bc

<=>( a^2 -2ab + b^2) + (a^2 -2ac + c^2)+(b^2 -2bc + c^2) > hoặc = 0

=<=>(a-b)^2 + (a-c)^2 + (b-c)^2 > hoặc = 0 ( BĐT luôn đúng ) => 2a^2 + 2b^2 + 2c^2 >hoặc = 2ab + 2ac + 2bc là đúng ! <=> a^2 + b^2 + c^2 > hoặc = ab+bc+ac.

Dấu = xảy ra khi : a=b=c

25 tháng 12 2016

Ta có \(a^2+b^2+c^2+ab+bc+ac\ge6\)

\(=>2\left(a^2+b^2+c^2+ab+bc+ac\right)\ge12\)

\(=>2a^2+2b^2+2c^2+2ab+2bc+2ac\ge12\)

\(=>a^2+b^2+c^2+a^2+b^2+c^2+2ab+2bc+2ac\ge12\)

Do \(a+b+c=3\)

\(=>\left(a+b+c\right)^2=9\\ =>a^2+b^2+c^2+2ab+2bc+2ac=9\)

Thế vào biểu thức \(a^2+b^2+c^2+a^2+b^2+c^2+2ab+2bc+2ac\ge12\)

Ta có \(a^2+b^2+c^2+9\ge12\)

\(=>a^2+b^2+c^2\ge3\) (1)

Ta có \(\begin{cases}a^2+b^2+c^2+2ab+2bc+2ac=9\\a^2+b^2+c^2+ab+bc+ac\ge6\end{cases}\)

\(=>\left(a^2+b^2+c^2+2ab+2bc+2ac\right)-\left(a^2+b^2+c^2+ab+ac+bc\right)\ge3\)

\(=>\left(2ab+2ac+2bc\right)-\left(ab+ac+bc\right)\ge3\)

\(=>ab+bc+ac\ge3\) (2)

Từ (1) và (2)

\(=>a^2+b^2+c^2+ab+bc+ac\ge6\)