Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a-b)^2 >= 0 => a^2+b^2-2ab>=0 => a^2+b^2>=2ab (1)
cm tương tự ta được b^2 + c^2 >= 2bc (2) ; c^2 + a^2>=2ac (3);
từ (1). (2), (3) ta được 2(a^2+b^2+c^2) >= 2ab + 2bc + 2ac
=> a^2 + b^2 + c^2 >= ab + bc +ca (đpcm)
Ta có a2 + b2 + c2 >= ab+bc+ac
\(\Leftrightarrow\) a2 + b2 +c2 -ab-bc-ac>= 0
\(\Leftrightarrow\) 2a2 + 2b2+2c2-2ab-2ac-2bc >=0
\(\Leftrightarrow\) (a-b)2 +(a-c)2 +(b-c)2 >=0( luôn đúng)
Vậy.... Dấu "=" xảy ra khi a=b=c
Ta có: \(a^2 + b^2 + c^2 = ab + ac + bc \)
\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 = 2ab + 2ac + 2bc\)
\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 - 2ab -2ac - 2bc = 0\)
\(\Leftrightarrow (a^2 - 2ab +b^2) + (a^2 - 2ac + c^2) + (b^2 - 2bc +c^2) = 0\)
\(\Leftrightarrow (a - b)^2 + (a-c)^2 + (b-c)^2 = 0\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\) \(\Leftrightarrow\) \(a=b=c\)
Giả sử:
2a^2 + 2b^2 + 2c^2 > hoặc = 2ab + 2ac + 2bc
<=>( a^2 -2ab + b^2) + (a^2 -2ac + c^2)+(b^2 -2bc + c^2) > hoặc = 0
=<=>(a-b)^2 + (a-c)^2 + (b-c)^2 > hoặc = 0 ( BĐT luôn đúng ) => 2a^2 + 2b^2 + 2c^2 >hoặc = 2ab + 2ac + 2bc là đúng ! <=> a^2 + b^2 + c^2 > hoặc = ab+bc+ac.
Dấu = xảy ra khi : a=b=c
Ta có \(a^2+b^2+c^2+ab+bc+ac\ge6\)
\(=>2\left(a^2+b^2+c^2+ab+bc+ac\right)\ge12\)
\(=>2a^2+2b^2+2c^2+2ab+2bc+2ac\ge12\)
\(=>a^2+b^2+c^2+a^2+b^2+c^2+2ab+2bc+2ac\ge12\)
Do \(a+b+c=3\)
\(=>\left(a+b+c\right)^2=9\\ =>a^2+b^2+c^2+2ab+2bc+2ac=9\)
Thế vào biểu thức \(a^2+b^2+c^2+a^2+b^2+c^2+2ab+2bc+2ac\ge12\)
Ta có \(a^2+b^2+c^2+9\ge12\)
\(=>a^2+b^2+c^2\ge3\) (1)
Ta có \(\begin{cases}a^2+b^2+c^2+2ab+2bc+2ac=9\\a^2+b^2+c^2+ab+bc+ac\ge6\end{cases}\)
\(=>\left(a^2+b^2+c^2+2ab+2bc+2ac\right)-\left(a^2+b^2+c^2+ab+ac+bc\right)\ge3\)
\(=>\left(2ab+2ac+2bc\right)-\left(ab+ac+bc\right)\ge3\)
\(=>ab+bc+ac\ge3\) (2)
Từ (1) và (2)
\(=>a^2+b^2+c^2+ab+bc+ac\ge6\)
Ta có (a+b)2 >=0 => a2 + 2ab + b2 >= 0 => a2 + b2 >= 2ab. (1)
(b+c)2 >=0 => b2 + 2bc + c2 >= 0 => b2 + c2 >= 2bc. (2)
(c+a)2 >=0 => c2 + 2ca + a2 >= 0 => c2 + a2 >= 2ca. (3)
Cộng (1), (2), (3), theo vế ta có 2(a2 + b2 + c2)>=2(ab+bc+ca)
suy ra a2 + b2 + c2>=ab+bc+ca (*)
Áp dụng bất đẳng thức trong tam giác ta có:
a+b>c => ac+bc>c2. (4)
b+c>a => ab+ac>a2. (5)
c+a>b => bc+ab>b2. (6)
Cộng (4), (5), (6) theo vế ta có 2(ab+bc+ca)>a2+b2+c2(**)
Từ (*) và (**) suy ra đpcm.
ai tích mk mk tích lại ) thề
Ta có (a+b)2 >=0 => a2 + 2ab + b2 >= 0 => a2 + b2 >= 2ab. (1)
(b+c)2 >=0 => b2 + 2bc + c2 >= 0 => b2 + c2 >= 2bc. (2)
(c+a)2 >=0 => c2 + 2ca + a2 >= 0 => c2 + a2 >= 2ca. (3)
Cộng (1), (2), (3), theo vế ta có 2(a2 + b2 + c2)>=2(ab+bc+ca)
suy ra a2 + b2 + c2>=ab+bc+ca (*)
Áp dụng bất đẳng thức trong tam giác ta có:
a+b>c => ac+bc>c2. (4)
b+c>a => ab+ac>a2. (5)
c+a>b => bc+ab>b2. (6)
Cộng (4), (5), (6) theo vế ta có 2(ab+bc+ca)>a2+b2+c2(**)
Từ (*) và (**) suy ra đpcm.