Hộ mk bài nx nha
Cho \(\Delta\)\(ABC\) đều. Gọi M là trung điểm của BC.
a) Tính các góc của tam giác ABM
b) Biết AM = 3cm. Tính cạnh của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Ta có: ΔABC cân tại A
mà AM là đường cao
nên AM là đường phân giác
c: Ta có: ΔABC đều
nên \(\widehat{ABM}=\widehat{ACM}=60^0\)
a) Vì là tam giác cân nên 2 góc ở đáy bằng nhau, góc ở đáy là : \(\left(180^0-50^0\right)\div2=65^0\)
b) Vì \(\Delta ABC\) đều \(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=180^0\div3=60^0\).Có \(BM=CM=1,5\left(cm\right)\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\Rightarrow\widehat{AMC}=\widehat{AMB}\). Mà 2 góc kề bù \(\Rightarrow\widehat{AMC}=\widehat{AMB}=90^0\)
Vì \(\Rightarrow\widehat{AMB}=90^0\Rightarrow\Delta AMB\) có \(AM^2=AB^2+BM^2\). Thay số. ta có :
\\(AM^2=3^2+1,5^2=9+2,25=11,25\Rightarrow AM=\sqrt{11,25}\)
c) Vì là tam giác cân nên 2 góc ở đáy bằng nhau, góc ở đỉnh là : \(180^0-\left(50^0.2\right)=80^0\)
b) \(AM^2+MB^2=AB^2\)
\(\Rightarrow AM=\sqrt{AB^2-MB^2}=\sqrt{3^2-1,5^2}=\sqrt{6,75}\)
học lại đinhl ý pytago nha Vũ Cao Minh⁀ᶦᵈᵒᶫ ( Cool Team )
a: ΔBAM cân tại B
mà BE là đường cao
nên BE là phân giác của góc ABM
b: Xét ΔMBA có
AH,BE là đừog cao
AH căt BE tại K
=>K là trực tâm
=>MK vuông gócAB
=>MK//AC
a: \(\widehat{AMB}=90^0;\widehat{BAM}=30^0;\widehat{ABM}=60^0\)
b: Xét ΔAMB vuông tại M có \(\sin60^0=\dfrac{AM}{AB}=\dfrac{3}{AB}\)
=>\(AB=BC=AC=2\sqrt{3}\left(cm\right)\)
anh ơi anh làm cái gì vậy? Đây là bài lớp 7 nên ko có sin hay \(2\sqrt{3}\) ở đây đou anh nhé