tìm a,b thuộc z để ab-2a -b =3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có ab-2a-b=3=>ab-2b-b=3
=>a(b-2)-b=5-2
=>a(b-2)-b+2=5
=>a(b-2)-(b-2)=5 (Đặt dấu trừ đằng trước)
=>(b-2)(a-1)=5
=>b-2 và a-1 thuộc ước của 5 là cộng trừ 1 cộng trừ 5
+Nếu b-2=5 thì a-1=1 rồi giải như tìm x
+BẠN LÀM CÁC TRƯỜNG HỢP TIẾP THEO TƯƠNG TỰ NHÉ!!!!!!!!!
\(\dfrac{5}{2}=\dfrac{1}{6}+\dfrac{b}{3}\)
\(\Leftrightarrow\dfrac{5}{2a}-\dfrac{1}{6}-\dfrac{b}{3}=0\)
msc : 18a
\(\Leftrightarrow\dfrac{45}{18a}-\dfrac{3a}{18a}-\dfrac{6ab}{18a}=0\)
\(\Leftrightarrow45-3a-6ab=0\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{15}{1+2b}\\b=\dfrac{15}{2a}-\dfrac{1}{2}\end{matrix}\right.\)
a) \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\left(đk:a,b\ne0,a\ne b\right)\Leftrightarrow\dfrac{b-a}{ab}=\dfrac{1}{a-b}\)
\(\Leftrightarrow-\left(a-b\right)^2=ab\Leftrightarrow a^2-ab+b^2=0\)
\(\Leftrightarrow\left(a^2-ab+\dfrac{1}{4}b^2\right)+\dfrac{3}{4}b^2=0\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a-\dfrac{1}{2}b=0\\\dfrac{3}{4}b^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}b\\b=0\end{matrix}\right.\) \(\Leftrightarrow a=b=0\left(ktm\right)\)
Vậy k có a,b thõa mãn
b) \(\dfrac{5}{2a}=\dfrac{1}{6}+\dfrac{b}{3}\left(a\ne0\right)\Leftrightarrow\dfrac{2b+1}{6}-\dfrac{5}{2a}=0\Leftrightarrow\dfrac{a\left(2b+1\right)-15}{6a}=0\)
\(\Leftrightarrow a\left(2b+1\right)-15=0\Leftrightarrow a\left(2b+1\right)=15\)
Do \(a,b\in Z,a\ne0\) nên ta có bảng sau:
a | 1 | -1 | 15 | -15 | 3 | -3 | 5 | -5 |
2b+1 | 15 | -15 | 1 | -1 | 5 | -5 | 3 | -3 |
b | 7(tm) | -8(tm) | 0(tm | -1(tm) | 2(tm) | -3(tm) | 1(tm) | -2(tm) |
Vậy...
a: Sửa đề: \(B=\left(\dfrac{2a}{a+3}+\dfrac{2}{3-a}+\dfrac{3}{a^2-9}\right):\dfrac{a+1}{a-3}\)
\(=\dfrac{2a^2-6a-2a-6+3}{\left(a-3\right)\left(a+3\right)}\cdot\dfrac{a-3}{a+1}=\dfrac{2a^2-8a-3}{\left(a+3\right)\left(a+1\right)}\)
b: |a|=2
=>a=2 hoặc a=-2
Khi a=2 thì \(B=\dfrac{2\cdot2^2-8\cdot2-3}{\left(2+3\right)\left(2+1\right)}=\dfrac{-11}{15}\)
Khi a=-2 thì \(B=\dfrac{2\cdot\left(-2\right)^2-8\cdot\left(-2\right)-3}{\left(-2+3\right)\left(-2+1\right)}=-21\)
tui chịu
tí nữa giải cho