Cho DABC có AB < AC; AD là phân giác. Trên AC lấy điểm E sao cho AE = AB.
Chứng minh:
a) DABD = DAED
b) Trên tia AB lấy điểm F sao cho AF = AC. Chứng minh: FBD = CED
c) AD ^ CF
d) DF = DC
e) BE // CF
f) Ba điểm F, D, E thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:
\(AM\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC,ta được:
\(AC\cdot AN=AH^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(AM\cdot AB=AC\cdot AN\)
Câu 6:
a: Xét ΔACD và ΔECD có
CA=CE
\(\widehat{ACD}=\widehat{ECD}\)
CD chung
Do đó: ΔACD=ΔECD
b: Ta có: ΔACD=ΔECD
nên DA=DE
mà DE<DB
nên DA<DB
a. áp dụng pytago cho tam giác ABC ta có: \(BC=\sqrt{9^2+12^2}=15\)
góc C đối diện cạnh AB
góc B đối diện cạnh AC. Mà AC>AB nên góc B > góc C
b. xét 2 tam giác MHC và MKB có:
MK=MK
MB=MC
Góc HMC = góc KMB (đối đỉnh) => Tam giác MHC= MKB ( c.g.c)
=> Góc K = góc K = 90 => HK vuông góc BK.
mà HK vuông góc AC (gt) => BK//AC (cùng vuông góc với HK)
c. Xét 2(GA+GB+GC)= (GA+GB) + (GB+GC) + (GC+GA)
+ GA+GB > AB = 9
+GB+GC > BC = 15
+GC+GA > AC = 12
=> 2(GA+GB+GC) > 9+15+12=36
=> GA+GB+GC > 18 => đccm