K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0
13 tháng 4 2018

a)vì ABC là tam giác vuông tại A

và AH vuông góc vs BC,dồng thời là đường cao,là đg trung tuyến trong tam giác

nên H=90độ

tam giác AHC vuông tại H 

14 tháng 3 2020

khó quá mà

11 tháng 2 2019

c, xét tam giác BEM và tam giác AFM có:

BE=AF(câu b)

BM=AM(do AM là trung tuyến của tam giác cân)

góc EBM =góc MAF(cùng phụ với góc ADM= góc BDE)

suy ra 2 tam giác trên bằng nhau

suy ra góc EMB= góc AMF( 2 góc tương ứng)

mặt khác: góc AMF+góc FMB=90 độ (câu a)

suy ra góc EMB+ góc FMB=90 độ

hay FM vuông góc với ME

hay tam giác EMF vuông tại M

 chị làm đó rồi nhé

11 tháng 2 2019

a, Xét tam giác AMB và tam giác AMC có:

AM chung

AB=AC(gt)

BM=CM(gt)

suy ra tam giác AMB= tam giác AMC(c.c.c)

suy ra góc AMB= góc AMC

suy ra góc AMB=góc AMC=180 độ/2=90 độ

hay AM vuông góc với BC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC           b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB,...
Đọc tiếp

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

2
14 tháng 7 2018

Bài 1 nếu chứng minh cũng chỉ được góc EMD= 2 góc AEM thôi

14 tháng 7 2018

chứng minh kiểu gì vậy

a: Xét ΔABC có AB<AC

mà BH là hình chiếu của AB trên BC

và CH là hình chiếu của AC trên BC

nên HB<HC

Ta có:AB<AC

nên \(\widehat{B}>\widehat{C}\)

hay \(\widehat{BAH}< \widehat{CAH}\)

b: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)

\(\widehat{BDA}+\widehat{HAD}=90^0\)

mà \(\widehat{CAD}=\widehat{HAD}\)

nên \(\widehat{BAD}=\widehat{BDA}\)

hay ΔBDA cân tại B