K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

xem kĩ đề lại nha bạn

31 tháng 1 2022

Xét tứ giác \(ADCH\) có:

\(\widehat{D}=\widehat{C}=\widehat{H}=90^o\)

\(\Rightarrow ADCH\) là hình chữ nhật

\(\Rightarrow AH=DC=12cm\)

Xét \(\Delta ADC\left(\widehat{D}=90^o\right)\) có:

\(AC^2=AD^2+DC^2\) (định lí pitago)

\(\Rightarrow AD=\sqrt{AC^2-DC^2}=\sqrt{15^2-12^2}=9cm=HC\)

Xét \(\Delta ABH\left(\widehat{H}=90^o\right)\) có:

\(AB^2=AH^2+BH^2\) (định lí pitago)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{13^2-12^2}=5cm\)

\(\Rightarrow BC=BH+HC=5+9=14cm\)

Vậy \(BC=14cm\)

31 tháng 1 2022

Ảnh thiếu mấy điểm C, H

30 tháng 9 2017

Áp dụng các hệ thức lượng trong tam giác vuông BDC cùng chú ý độ dài đường cao hạ từ B xuống CD bằng AD, ta tính được : AB = 9cm, BD =15cm, hoặc AB = 16cm, BC = 15cm, BD = 20cm

9 tháng 6 2017

Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD) 
-> Tam giác ADB và BCD đồng dạng 

=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1) 

Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago : 
BD^2+BC^2=CD^2 
hay BC^2+BD^2 =625 (2) 

Từ (1) và (2) ta giải hệ thì có BC, BD: 
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144) 
-> BD = can( (625+can( 387025))/2 ) 
-> BC = 3000/BD

Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD) 
-> Tam giác ADB và BCD đồng dạng 

=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1) 

Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago : 
BD^2+BC^2=CD^2 
hay BC^2+BD^2 =625 (2) 

Từ (1) và (2) ta giải hệ thì có BC, BD: 
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144) 
-> BD = can( (625+can( 387025))/2 ) 
-> BC = 3000/BD

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

Sửa đề: đường cao BH

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có

góc C chung

=>ΔBDC đồng dạng với ΔHBC

b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)

HC=15^2/25=9cm

HD=25-9=16cm

NV
20 tháng 7 2021

Kẻ BE vuông góc CD \(\Rightarrow ABED\) là hcn (tứ giác 4 góc vuông) \(\Rightarrow AB=DE\)

Đặt \(AB=x>0\) 

Áp dụng định lý Pitago cho tam giác vuông ABD:

\(AB^2+AD^2=BD^2\Leftrightarrow BD^2=x^2+144\) (1)

Áp dụng hệ thức lượng cho tam giác vuông BDC:

\(BD^2=DE.DC\Leftrightarrow BD^2=25x\) (2)

(1);(2) \(\Rightarrow x^2+144=25x\Rightarrow x^2-25x+144=0\Rightarrow\left[{}\begin{matrix}x=16\\x=9\end{matrix}\right.\)

- Với \(AB=16\left(cm\right)\Rightarrow BD=\sqrt{AD^2+AB^2}=20\left(cm\right)\)

\(BC=\sqrt{DC^2-BD^2}=15\left(cm\right)\)

- Với \(AB=9\left(cm\right)\Rightarrow BD=\sqrt{AD^2+AB^2}=15\left(cm\right)\)

\(BC=\sqrt{DC^2-BD^2}=20\left(cm\right)\)

NV
20 tháng 7 2021

undefined