Đố các bạn nêu được cách vẽ được đoạn thẳng có độ dài bằng đúng:
a) \(\sqrt{13}cm\) b) \(\sqrt{6}cm\) c) \(\sqrt{17}cm\) d) \(\sqrt[3]{36}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AH là đường cao trong tam giác ABC cân tại A nên AH cùng là đường trung tuyến
\(\Rightarrow\)H là trung điểm của BC
Áp dụng định lý py-ta-go vào tam giác vuông AHC có:
\(HC=\sqrt{AC^2-AH^2}=\sqrt{2}\left(cm\right)\)
Do M là trung điểm của HC\(\Rightarrow HM=\dfrac{HC}{2}=\dfrac{\sqrt{2}}{2}\) (cm)
Áp dụng định lý py-ta-go vào tam giác AMH vuông có:
\(AH^2+HM^2=AM^2\)
\(\Leftrightarrow AM=\sqrt{AH^2+HM^2}=\sqrt{3+\dfrac{1}{2}}=\dfrac{\sqrt{14}}{2}\left(cm\right)\)
Có M và H lần lượt là tđ của HC và CA
Suy ra MN là đường trung bình của tam giác AHC
\(\Rightarrow\) MN//AH và \(MN=\dfrac{AH}{2}=\dfrac{\sqrt{3}}{2}\)(cm)
Vì \(AH\perp BC\)\(\Rightarrow MN\perp BC\)
Áp dụng định lý py-ta-go vào tam giác BNM vuông có:
\(BN^2=MN^2+BM^2=\dfrac{3}{4}+\left(BC-MC\right)^2=\dfrac{3}{4}+\left(2HC-HM\right)^2=\dfrac{3}{4}+\dfrac{9}{2}=\dfrac{21}{4}\)
\(\Rightarrow BN=\dfrac{\sqrt{21}}{2}\) (cm)
Vậy...
Cái cuối cùng đơn vị là cm luôn nhé.
khó thế chị ơi em mới học lớp 4