K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 8 2021

\(\dfrac{AB}{AC}=\dfrac{\sqrt{6}}{3}\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}\)

\(AB.AC=32\sqrt{6}\Rightarrow\dfrac{AC^2\sqrt{6}}{3}=32\sqrt{6}\)

\(\Rightarrow AC^2=96\Rightarrow AC=4\sqrt{6}\)

\(\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}=8\)

Kẻ đường cao AD ứng với BC

Do \(C=45^0\Rightarrow\widehat{CAD}=90^0-45^0=45^0\Rightarrow\Delta ACD\) vuông cân tại D

\(\Rightarrow AD=CD=\dfrac{AC}{\sqrt{2}}=4\sqrt{3}\)

Pitago tam giác vuông ABD:

\(BD=\sqrt{AB^2-AD^2}=4\)

\(\Rightarrow BC=CD+BD=4+4\sqrt{3}\)

\(cosB=\dfrac{BD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow B=60^0\)

\(S_{ABC}=\dfrac{1}{2}AD.BC=\dfrac{1}{2}.4\sqrt{3}.\left(4+4\sqrt{3}\right)=...\)

NV
23 tháng 8 2021

undefined

7 tháng 1 2018

Bài2 , 

Ta có\(sin_P^2+cos_P^2=1\)

mà \(2\left(sin_P^2+cos_P^2\right)\ge\left(sin_P+cos_p\right)^2\Rightarrow\left(sin_p+cos_p\right)\le\sqrt{2}\)

^_^

10 tháng 7 2016

  Đã xảy ra lỗi rồi. Bạn thông cảm vì sai sót này.

  Ta có:  

Áp dụng hệ quả của bất đẳng thức Cauchy cho ba số không âm 

   trong đó với     , ta có:

  

Tương tự, ta có:

       

Cộng ba bất đẳng thức     và   , ta được:

  

Khi đó, ta chỉ cần chứng minh

  

Thật vậy, bất đẳng thức cần chứng minh được quy về dạng sau:    (bất đẳng thức Cauchy cho ba số   )

Hay       

Mà    đã được chứng minh ở câu    nên    luôn đúng với mọi  

Dấu    xảy ra    

Vậy,