Rút gọn A=98 x a+118 x b+2 x a-18 x b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 98 x a + 2 x a + 118 x b - 18 x b
= (98+2) x a + (118-18) x b
= 100 x a + 100 x b
= 100 x (a+b)
= 100 x 240
= 24000
A=98 x a+118 x b+2 x a-18 x b
=(98+2) x a+(118-18) x b
=100 x a+100 x b
=100 x (a+b)
=100 x 20 x 12
=2000 x 12
=24000
a) \(\dfrac{3x^2y}{2xy^5}=\dfrac{3x}{2y^4}\)
b) \(\dfrac{3x^2-3x}{x-1}=\dfrac{3x\left(x-1\right)}{x-1}=3x\)
c) \(\dfrac{ab^2-a^2b}{2a^2+a}=\dfrac{ab\left(b-a\right)}{a\left(2a+1\right)}=\dfrac{b\left(b-a\right)}{2a+1}=\dfrac{b^2-ab}{2a+1}\)
d) \(\dfrac{12\left(x^4-1\right)}{18\left(x^2-1\right)}=\dfrac{2\left(x^2-1\right)\left(x^2+1\right)}{3\left(x^2-1\right)}=\dfrac{2\left(x^2+1\right)}{3}\)
`a, (3x^2y)/(2xy^5)`
`= (3x)/(2y^4)`
`b, (3x^2-3x)/(x-1)`
`= (3x(x-1))/(x-1)`
`= 3x`
`c, (ab^2-a^2b)/(2a^2+a)`
`= (b(a-b))/((2a+1))`
`d, (12(x^4-1))/(18(x^2-1)) = (2(x^2+1))/3`.
\(A=\dfrac{3}{x+3}+\dfrac{1}{x-3}+\dfrac{18}{x^2-9}\)
\(a,\) Điều kiện xác định: \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\x^2-9\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)
\(b,A=\dfrac{3}{x+3}+\dfrac{1}{x-3}+\dfrac{18}{x^2-9}\)
\(=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}+\dfrac{18}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{4x+12}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{4}{x-3}\)
\(c,x=1\Rightarrow A=\dfrac{4}{1-3}=-2\)
ta có: a) (x+2)(x2-2x+4)-(18+x3)
=(x3+4)-(18+x3)
=x3+8-18-x3
=8-18
=-10
b)(x-3)(x+3)-(x+5)(x-1)=(x2-9)-(x2-x+5x-5)
=(x2-9)-(x2+4x-5)
=x2-9-x2-4x+5
=-9-4x+5
=-4-4x
=4(-1-x)
\(A=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
\(A=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}=\frac{4x+12}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{4}{x-3}\)
a)
\(A=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
\(A=\frac{3}{x+3}+\frac{1}{x-3}+\frac{18}{-\left(9-x^2\right)}\)
\(A=\frac{3}{x+3}+\frac{1}{x-3}+\frac{18}{x^2-3^2}\)
\(A=\frac{3}{x+3}+\frac{1}{x-3}+\frac{18}{\left(x+3\right).\left(x-3\right)}\)
\(A=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{4x+12}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{4}{x-3}\)
b) Thay \(A=4\) vào phân thức \(A\) , ta có:
\(\frac{4}{x-3}=4\)
\(\Leftrightarrow x-3=\frac{4}{4}\)
\(x-3=1\)
\(x=1+3\)
\(x=4\)
Vậy \(x=4\) khi \(A=4\)
A= \(\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}=\frac{3x-9}{\left(x+3\right)\left(x-3\right)}+\frac{x+3}{\left(x+3\right)\left(x-3\right)}+\frac{18}{\left(x+3\right)\left(x-3\right)}\)
= \(\frac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}=\frac{4x+12}{\left(x+3\right)\left(x-3\right)}=\frac{4}{x-3}\)
b) để A=4 thì \(\frac{4}{x-3}=4\)=> x-3=1=|> x=4