Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\ne+-3\)
\(3\left(x-3\right)+1\left(x+3\right)+18\)
3x-9+x+3+18
4x+15
x=-15/4
a) ĐKXĐ: x \(\ne\pm3\)
b) = \(\frac{3\left(x-3\right)+x+3+18}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)
c) P = 4 hay \(\frac{4}{x-3}=4\)=> x - 3 = 1 <=> x = 4 (TM)
Vậy ...
Bạn viết biểu thức A ra đi rồi bọn mình mới làm được chứ -.-
Đk : \(x\ne\pm3\)
Để B>A
\(\Leftrightarrow\frac{3}{x+3}>4\)
Rõ ràng: \(x+3>0\)
\(\Rightarrow\frac{3}{x+3}>4\)
\(\Leftrightarrow3>4\left(x+3\right)\)
\(\Leftrightarrow3>4x+12\)
\(\Leftrightarrow-9>4x\)
\(\Leftrightarrow x< \frac{-9}{4}\)
KL: \(x\in Z,x< \frac{-9}{4},x\ne\pm3\)
a, ĐKXĐ :\(x\ne3;x\ne-3\)
b, \(P=\frac{3\cdot\left(x-3\right)}{\left(x-3\right)\cdot\left(x+3\right)}+\frac{x+3}{\left(x+3\right)\cdot\left(x-3\right)}+\frac{18}{\left(x+3\right)\cdot\left(x-3\right)}\)
\(=\frac{3x-9+x+3+18}{\left(x+3\right)\cdot\left(x-3\right)}\)\(=\frac{4x+12}{\left(x-3\right)\cdot\left(x+3\right)}\)
\(=\frac{4\cdot\left(x+3\right)}{\left(x+3\right)\cdot\left(x-3\right)}=\frac{4}{x-3}\)
c, Với P = 4 \(\Rightarrow\frac{4}{x-3}=4\Rightarrow4=4\cdot\left(x-3\right)\)\(\Rightarrow1=x-3\Rightarrow x=4\)
\(a,ĐKXĐ\hept{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}\Leftrightarrow x\ne\pm3}\)
Ta có: \(M=\frac{3}{x-3}-\frac{6x}{9-x^2}+\frac{x}{x+3}\)
\(=\frac{3}{x-3}+\frac{6x}{x^2-9}+\frac{x}{x+3}\)
\(=\frac{3\left(x+3\right)+6x+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{x+3}{x-3}\)
\(b,x=\frac{1}{2}\Rightarrow M=\frac{\frac{1}{2}+3}{\frac{1}{2}-3}=-\frac{7}{5}\)
a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.
Thay x=-2 và B ta có :
\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)
b) Rút gọn :
\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)
\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
Xấu nhỉ ??
1/ Thay x=-4 vao A -> A= \(\frac{-4}{-4+3}\)= 4
2/ B=\(\frac{2}{x-3}\)+\(\frac{x-15}{x^2-9}\)
B= \(\frac{2\left(x+3\right)+x-15}{\left(x-3\right)\left(x+3\right)}\)
B= \(\frac{2x+6+x-15}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{3x-9}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{3}{x+3}\)
c, B>A <=> \(\frac{3}{x+3}\)> \(\frac{x}{x+3}\)
<=> \(\frac{3}{x+3}\)- \(\frac{x}{x+3}\)> 0
<=> \(\frac{3-x}{x+3}\)>0
<=> 3-x <0 / >0 ( Đkxd x khác -3 )
x+3 <0 / >0
..............
...............................
Vậy ...
1) \(A=\frac{x}{x+3}\)( ĐKXĐ : \(x\ne-3\))
Với x = -4 ( tmđk ) thì giá trị của A là
\(A=\frac{-4}{-4+3}=\frac{-4}{-1}=4\)
2) \(B=\frac{2}{x-3}+\frac{x-15}{x^2-9}\)( ĐKXĐ : \(x\ne\pm3\))
\(B=\frac{2}{x-3}+\frac{x-15}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x-15}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{2x+6+x-15}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)
3) Để B > A
=> \(\frac{3}{x+3}>\frac{x}{x+3}\)( ĐKXĐ : \(x\ne-3\))
<=> \(\frac{3}{x+3}-\frac{x}{x+3}>0\)
<=> \(\frac{3-x}{x+3}>0\)
Xét hai trường hợp :
1.\(\hept{\begin{cases}3-x>0\\x+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x>-3\\x>-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}}\Leftrightarrow-3< x< 3\)( tmđk )
2. \(\hept{\begin{cases}3-x< 0\\x+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x< -3\\x< -3\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x< -3\end{cases}}\)( loại )
Vì x nguyên => x ∈ { -2 ; -1 ; 0 ; 1 ; 2 ; 3 }
Vậy ...
A= \(\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}=\frac{3x-9}{\left(x+3\right)\left(x-3\right)}+\frac{x+3}{\left(x+3\right)\left(x-3\right)}+\frac{18}{\left(x+3\right)\left(x-3\right)}\)
= \(\frac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}=\frac{4x+12}{\left(x+3\right)\left(x-3\right)}=\frac{4}{x-3}\)
b) để A=4 thì \(\frac{4}{x-3}=4\)=> x-3=1=|> x=4
Cây dừa, cây hành, cây ngô