Cho tam giác ABC, H là trung điểm của AC. Trên tia đối của tia HB lấy điểm D sao cho HD = HB.
a) Chứng minh ΔHAD = ΔHCB. b) Chứng minh AB // DC.
c) Lấy điểm M nằm giữa hai điêm A, B. Đường thẳng MH kéo dài cắt CD tại N.Chứng minh ΔCMH = ΔANH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) *Xét \(\Delta HAD\) và \(\Delta HCB\) có:
\(\left\{{}\begin{matrix}AH=HC\left(gt\right)\\\widehat{AH\text{D}}=\widehat{CHB}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BH=HD\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta HAD=\Delta HCB\left(c-g-c\right)\)
b) *Xét \(\Delta AHB\) và \(\Delta CHD\) có:
\(\left\{{}\begin{matrix}AH=HC\left(gt\right)\\\widehat{AHB}=\widehat{CHD}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BH=HD\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AHB=\Delta CHD\left(c-g-c\right)\)
\(\Rightarrow\widehat{HAB}=\widehat{HCD}\) (hai góc tương ứng)
Mà \(\widehat{HAB}\) và \(\widehat{HCD}\) ở vị trí so le trong
\(\Rightarrow AB//CD\)
c) *Xét \(\Delta AHM\) và \(\Delta CHN\)có:
\(\left\{{}\begin{matrix}AH=HC\left(gt\right)\\\widehat{AHM}=\widehat{CHN}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\\widehat{HAM}=\widehat{HCN}\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AHM=\Delta CHN\left(g-c-g\right)\)
\(\Rightarrow MH=HN\) (hai cạnh tương ứng)
*Xét \(\Delta CMH\) và \(\Delta ANH\) có:
\(\left\{{}\begin{matrix}CH=AH\left(gt\right)\\\widehat{MHC}=\widehat{NHA}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\MH=HN\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta CMH=\Delta ANH\left(c-g-c\right)\)
Hình tự vẽ nhé !
Giải
a) Xét tam giác MHB và tam giác MKC có
MB = MC ( vì M là trung điểm của BC )
HMB = KMC ( vì đối đỉnh )
MH = MK ( vì m là trung điểm của HK )
Do đó Tam giác MHB = tam giác MKC
a) Xét tam giác HAD và tam giác HCB có:
+ HD = HB (gt).
+ \(\widehat{AHD}=\widehat{CHB}\) (đối đỉnh).
+ HA = HC (H là trung điểm AC).
=> Tam giác HAD = Tam giác HCB (c - g - c).
b) Xét tứ giác ADCB có:
+ H là trung điểm AC (gt).
+ H là trung điểm BD (HD = HB).
=> Tứ giác ADCB là hình bình hành (dhnb).
=> AB // DC (Tính chất hình bình hành).
c) Ta có: AB // DC (cmt). \(\Rightarrow\widehat{HAM}=\widehat{HCN}\) (SLT).
Xét tam giác AHM và tam giác CHN có:
+ \(\widehat{AHM}=\widehat{CHN}\) (đối đỉnh).
+ AH = CH (H là trung điểm AC).
+ \(\widehat{HAM}=\widehat{HCN}\) (cmt).
=> Tam giác AHM = Tam giác CHN (g - c - g).
Xét tam giác CMH và tam giác ANH có:
+ CH = AH (Tam giác AHM = Tam giác CHN).
+ \(\widehat{CHM}=\widehat{AHN}\) (đối đỉnh).
+ MH = NH (Tam giác AHM = Tam giác CHN).
=> Tam giác CMH = Tam giác ANH (c - g - c).