cho hệ pt \(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\)
tìm m để hệ có nghiệm (-1;3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}x+my=3\\mx+4y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2y-4y=3m-6\\mx+4y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2-4\right)=3m-6\\mx+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-6}{m^2-4}\\mx=6-4y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3\left(m-2\right)}{\left(m+2\right)\left(m-2\right)}=\dfrac{3}{m+2}\\mx=6-4\cdot\dfrac{3}{m+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{m+2}\\mx=6-\dfrac{12}{m+2}=\dfrac{6\left(m+2\right)-12}{m+2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{m+2}\\mx=\dfrac{6m+12-12}{m+2}=\dfrac{6m}{m+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{6m}{m+2}:m=\dfrac{6m}{m+2}\cdot\dfrac{1}{m}=\dfrac{6}{m+2}\\y=\dfrac{3}{m+2}\end{matrix}\right.\)
Để phương trình có nghiệm x>1 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{6}{m+2}>1\\\dfrac{3}{m+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{m+2}-1>0\\m+2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{m+2}-\dfrac{m+2}{m+2}>0\\m>-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6-m-2}{m+2}>0\\m>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-m>0\\m>-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m>-4\\m>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m>-2\end{matrix}\right.\Leftrightarrow-2< m< 4\)
Vậy: Để hệ phương trình có nghiệm x>1 và y>0 thì -2<m<4
\(\left\{{}\begin{matrix}D=m^2-4\\D_x=9m-32\\D_y=8m-9\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(D\ne0\Leftrightarrow m^2-4\ne0\Leftrightarrow m\ne\pm2\)
Hệ vô nghiệm khi \(\left\{{}\begin{matrix}D=0\\\left[{}\begin{matrix}D_x\ne0\\D_y\ne0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\\left[{}\begin{matrix}m\ne\dfrac{32}{9}\\m\ne\dfrac{9}{8}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow m=\pm2\)
\(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2x+4my=9m\\4x+4my=32\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=9m-32\\mx+4y=9\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(m^2-4\ne0\Rightarrow m\ne\pm2\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{9m-32}{m^2-4}\\y=\dfrac{9-mx}{4}=\dfrac{8m-9}{m^2-4}\end{matrix}\right.\)
\(x=3y\Rightarrow\dfrac{9m-32}{m^2-4}=\dfrac{3\left(8m-9\right)}{m^2-4}\)
\(\Rightarrow9m-32=3\left(8m-9\right)\)
\(\Rightarrow m=-\dfrac{1}{3}\)
Thay m=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3y=3-\dfrac{9}{5}=\dfrac{6}{5}\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{4}\)
=>\(m^2\ne4\)
=>\(m\notin\left\{2;-2\right\}\)(1)
Khi \(m\notin\left\{2;-2\right\}\) thì hệ phương trình tương đương với:
\(\left\{{}\begin{matrix}x=3-my\\mx+4y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=3-my\\m\cdot\left(3-my\right)+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-my\\3m-m^2\cdot y+4y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3m-y\left(m^2-4\right)=6\\x=3-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(m^2-4\right)=3m-6\\x=3-my\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{3}{m+2}\\x=3-\dfrac{3m}{m+2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{3}{m+2}\\x=\dfrac{3m+6-3m}{m+2}=\dfrac{6}{m+2}\end{matrix}\right.\)
Để x>1 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{6}{m+2}>1\\\dfrac{3}{m+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6-m-2}{m+2}>0\\m+2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{4-m}{m+2}>0\\m>-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{m-4}{m+2}< 0\\m>-2\end{matrix}\right.\Leftrightarrow-2< m< 4\)
Kết hợp (1), ta được: \(\left\{{}\begin{matrix}-2< m< 4\\m\ne2\end{matrix}\right.\)
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
thay X=-1, Y=3 giải phương trình ta được m=3