K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2015

a) GTNN la 125

b) GTLN la 503

25 tháng 3 2016

a)\(A=x^2+6x+15\)

\(A=x^2+6x+3^2-3^2+15\)

\(A=\left(x+3\right)^2+6\)

Vì \(\left(x+3\right)^2\ge0\) với mọi x nên (x+3)2+6>0 với mọi x

b) A có giá trị nhỏ nhất

A=(x+3)2+6

=> Amin=6<=>(x+3)2=0<=>x=-3

Vậy: Gtnn của A là 6 khi x= -3

3 tháng 6 2021

\(T=\left(x_A-2y_A+2\right)\left(x_B-2y_B+2\right)=60>0\)

=> A và B nằm cùng phía so với d

a)Lấy B' đối xứng với B qua d

=> d là trung trực của BB'

Có \(MA+MB=MA+MB'\)

Để MA+MB nn <=> MA+MB' nhỏ nhất <=> M;A;B' thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB'}\) cùng phương

\(BB'\left\{{}\begin{matrix}quaB\left(2;5\right)\\\perp d\Rightarrow vtcp\overrightarrow{n}\left(2;1\right)\end{matrix}\right.\)

\(\Rightarrow BB':2x+y-9=0\)

Gọi \(F=BB'\cap d\) \(\Rightarrow F\left(\dfrac{16}{5};\dfrac{13}{5}\right)\)

F là trung điểm của BB' \(\Rightarrow B'\left(\dfrac{22}{5};\dfrac{1}{5}\right)\)

\(M\in\left(d\right)\Rightarrow M\left(2t-2;t\right)\)

\(\Rightarrow\overrightarrow{AB'}\left(\dfrac{22}{5};-\dfrac{29}{5}\right)\);\(\overrightarrow{AM}\left(2t-2;t-6\right)\)

\(\overrightarrow{AM};\overrightarrow{AB'}\) cp <=> \(\dfrac{22}{5}\left(t-6\right)=-\dfrac{29}{5}\left(2t-2\right)\)

<=>\(t=\dfrac{19}{8}\)

Vậy \(M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

3 tháng 6 2021

b) Có \(MA-MB\le AB\)

\(\Leftrightarrow\left|MA-MB\right|\le AB\)

\(\left|MA-MB\right|\) lớn nhất <=> M;A;B thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB}\) cp

\(M\in\left(2t-2;t\right)\)

\(\Rightarrow\overrightarrow{AM}\left(2t-2;t-6\right)\)\(\overrightarrow{AB}\left(2;-1\right)\)

\(\overrightarrow{AM};\overrightarrow{AB}\) cp <=> \(-1\left(2t-2\right)=2\left(t-6\right)\)

\(\Leftrightarrow t=\dfrac{7}{2}\)

\(\Rightarrow\) \(M\left(5;\dfrac{7}{2}\right)\)

3 tháng 8 2015

A = x^2 - 4x + 12 = x^2 - 4x + 4 +  8 = ( x+ 2 )^2 + 8 >= 8 ( với mọi x)

VẬy GTNN của BT klaf 8 khi x - 2 = 0 => x = 2 

b) 1 + 6x - x^2 = - ( x^2 - 6x - 1 ) = - ( x^2 - 6x + 9 - 10 )=- ( x - 3 )^2 + 10  <= -10 

VẬy GTLN là -10 khi x = 3

3 tháng 8 2015

sửa lại:

a)  \(A=x^2-4x+12\)

         \(=\left(x^2-4x+2^2\right)+8\)

         \(=\left(x-2\right)^2+8\)

      mà (x + 2)2  > 0

Vậy giá trị nhỏ nhất của A = 8 tại x = 2

   b) \(A=1+6x-x^2\)

            \(=-\left(x^2-6x+3^2\right)+10\)

            \(=-\left(x-3\right)^2+10\)

 mà  -(x - 3)2  < 0

 Vậy giá trị lớn nhất của A = 10 tại x = 3

 

30 tháng 6 2017

\(A=x^2-6x+11\)

\(=x^2-2x.3+3^2+2\)

\(=\left(x-3\right)^2+2\)

\(\Rightarrow A\ge2\)

\(\Rightarrow MinA=2\)

\(Khi\)\(\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\)

Chúc bn học giỏi nhoa!!!

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

13 tháng 11 2021

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

13 tháng 11 2021

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

9 tháng 7 2015

1) \(A=-\left(x^2-6x-1\right)=-\left(x^2-2.3x+9-10\right)\)

         \(=-\left(x-3\right)^2+10\)

         \(=10-\left(x-3\right)^2\le10\)  ( vì  \(\left(x-3\right)^2\ge0\) với mọi x)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)

Vậy Max A = 10 tại x=3.

 

11 tháng 11 2021
Thôi nhắn chả hiểu luôn
11 tháng 11 2021
Chịu vì nhắn ko hiểu luôn