Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=2
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
A = -x² - 6x + 1
= -(x² + 6x - 1)
= -(x² + 6x + 9 - 10)
= -[(x + 3)² - 10]
= -(x + 3)² + 10
Do (x + 3)² ≥ 0 với mọi x ∈ R
⇒ -(x + 3)² ≤ 0 với mọi x ∈ R
⇒ -(x + 3)² + 10 ≤ 10 với mọi x ∈ R
Vậy GTLN của A là 10 khi x = -3
\(A=-x^2-6x+1\)
\(A=-\left(x^2+6x-1\right)\)
\(A=-\left(x^2+6x+9-10\right)\)
\(A=-\left(x^2+2\cdot x\cdot3+3^2\right)+10\)
\(A=-\left(x+3\right)^2+10\)
Có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow-\left(x+3\right)^2\le0\)
\(\Rightarrow-\left(x+3\right)^2+10\le10\)
\(\Rightarrow A\le10\)
Dấu "=" xảy ra khi \(\left(x+3\right)^2=0\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy: \(A_{min}=10\Leftrightarrow x=-3\)
a,Ta có B = x2-x+x = x2
Mà x2 ≥ 0 với ∀ x.Dấu ''='' xảy ra <=> x=0
Vậy Min B = 0 tại x = 0
b,Ta có 4x-x2+3 = -x2+4x-4+7
= -(x2-4x+4)+7
= -(x-2)2+7
Mà (x-2)2 ≥ 0 với ∀ 0 => -(x-2)2 ≤ 0 => -(x-2)2+7 ≤ 7
Dâu ''='' xảy ra <=> -(x-2)2 = 0 <=> x-2 = 0 <=> x=2
Vậy Max c = 7 tại x = 2.
c,Ta có 2x-2x2-5 = -x2+2x-1-x2-4
= -(x-1)2-x2-4
Mà (x-1)2 ≥ 0 => -(x-1)2 ≤ 0
x2 ≥ 0 => -x2 ≤ 0
Ta có D đạt GTLN <=> -(x-1)2 = 0 hoặc -x2 = 0
-Xét -(x-1)2 = 0 <=> x = 1. Khi đó ta có D = -5
-Xét -x2 = 0 <=> x = 0. Khi đó ta có D = -5
Vậy Max D = -5 tại x = 0 hoặc x = 1
Điều kiện x ≠ -2 và x ≠ 0
Vì x + 1 2 ≥ 0 nên - x + 1 2 ≤ 0 ⇒ - x + 1 2 - 1 ≤ - 1
Khi đó biểu thức có giá trị lớn nhất bằng -1 khi x = -1
Vậy biểu thức đã cho có giá trị lớn nhất bằng -1 tại x = -1.
A+1 = x^2+6x+9/x^2+1 = (x+3)^2/x^2+1 >= 0
=> A >= -1
Dấu "=" xảy ra <=> x+3=0 <=> x=-3
Vậy GTNN của A = -1 <=> x=-3
Tk mk nha
a)\(A=x^2+6x+15\)
\(A=x^2+6x+3^2-3^2+15\)
\(A=\left(x+3\right)^2+6\)
Vì \(\left(x+3\right)^2\ge0\) với mọi x nên (x+3)2+6>0 với mọi x
b) A có giá trị nhỏ nhất
A=(x+3)2+6
=> Amin=6<=>(x+3)2=0<=>x=-3
Vậy: Gtnn của A là 6 khi x= -3