Dựa vào công thức : \(\frac{1}{b}-\frac{1}{b+1}<\frac{1}{b^2}<\frac{1}{b-1}-\frac{1}{b}\)
Để chứng minh 2/5 < 1/2^2+1/3^2+.............+1/9^2 < 8/9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ Hình 1.24, ta thấy đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = \tan x\;\)tại 1 điểm \(x = \frac{\pi }{4}\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\)
b) Ta có công thức nghiệm của phương trình là: \(x = \frac{\pi }{4} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
a) Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q = 2\).
Vậy ta có: \({u_n} = {u_1}.{q^{n - 1}} = {5.2^{n - 1}}\)
b) Cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{{10}}\).
Vậy ta có: \({u_n} = {u_1}.{q^{n - 1}} = 1.{\left( {\frac{1}{{10}}} \right)^{n - 1}} = \frac{1}{{{{10}^{n - 1}}}}\).
Ta có: \({u_1} = 1,\;q = \frac{{\frac{1}{2}}}{1} = \frac{1}{2}\).
Suy ra công thức tổng quát của dãy số \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\).
Chọn đáp án D.
Lúc này thầy viết nhầm mất giá trị b,e,f nó phải bằng 1,2,3 và lúc tính quên không lộn ngược c,f,i. Để thầy giải lại:
Ta hãy xét hai biểu thức \(a+\frac{1}{b+\frac{1}{c}},d+\frac{1}{e+\frac{1}{f}}\). Ta thấy rằng, nếu \(a>d\to a+\frac{1}{b+\frac{1}{c}}>d+1\ge d+\frac{1}{e+\frac{1}{f}}\). Điều đó có nghĩa rằng ở phần không chứa phân số, giá trị càng tăng biểu thức càng lớn, không phụ thuộc vào các giá trị ở mẫu. Suy ra để tổng lớn nhất thì \(a,d,g\) phải nhận các giá trị là \(7,8,9\). Không mất tính tổng quát coi \(a=9,d=8,g=7\).
Tiếp theo, xét hai mẫu số \(b+\frac{1}{c},e+\frac{1}{f}\). Nếu \(b>e\to b+\frac{1}{c}>e+1\ge e+\frac{1}{f}\), điều đó có nghĩa làm cho mẫu số tăng lên nếu phần b tăng lên. Để phân số lớn nhất thì mẫu phải nhỏ nhất. Do đó mà \(b,e,h\) phải nhận các giá trị bé nhất là \(1,2,3\). Không mất tính tổng quát coi \(b=1,e=2,h=3\). Cuối cùng ta có các phân số sắp xếp như sau \(\frac{1}{1+\frac{1}{c}}>\frac{1}{2+\frac{1}{f}}>\frac{1}{3+\frac{1}{i}}\). Các số \(c,f,i\)
chỉ nhận các giá trị là 4,5,6. Từ đó ta thấy \(c=6,f=5,i=4\). Vậy giá trị lớn nhất của tổng sẽ là
\(9+\frac{1}{1+\frac{1}{6}}+8+\frac{1}{2+\frac{1}{5}}+7+\frac{1}{3+\frac{1}{4}}=24+\frac{6}{7}+\frac{5}{11}+\frac{4}{13}=\frac{25645}{1001}\).