K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Lời giải:
Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:
$\Delta=(m+1)^2+8(m-1)>0$

$\Leftrightarrow m^2+10m-7>0(*)$

Áp dụng định lý Viet:

$x_1+x_2=\frac{m+1}{2}$

$x_1x_2=\frac{m-1}{2}$

Khi đó:
$x_1-x_2=x_1x_2$

$\Rightarrow (x_1-x_2)^2=(x_1x_2)^2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1x_2)^2$
$\Leftrightarrow (\frac{m+1}{2})^2-2(m-1)=(\frac{m-1}{2})^2$
$\Leftrightarrow m=2$ (thỏa mãn $(*)$)

Vậy......

NV
26 tháng 3 2022

Pt có 2 nghiệm khi: \(\Delta=25-8\left(m+1\right)\ge0\Rightarrow m\le\dfrac{17}{8}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\x_1x_2=\dfrac{m+1}{2}\end{matrix}\right.\)

Kết hợp Viet và điều kiện đề bài: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\2x_1+3x_2=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{7}{2}\\x_1=-1\end{matrix}\right.\)

Thế vào \(x_1x_2=\dfrac{m+1}{2}\Rightarrow\dfrac{m+1}{2}=-\dfrac{7}{2}\)

\(\Rightarrow m=-8\)

8 tháng 6 2021

PT có nghiệm `<=> \Delta' >=0`

`<=> (m-1)^2-(m^2+2)>=0`

`<=>-2m-1>=0`

`<=>m <= -1/2`

Viet: `x_1+x_2=2m-2`

`x_1x_2=m^2+2`

`x_1^2+x_2^2=10`

`<=>(x_1+x_2)^2-2x_1x_2=10`

`<=>(2m-2)^2-2(m^2+2)=10`

`<=> 2m^2-8m=10`

`<=>` \(\left[{}\begin{matrix}m=-1\left(TM\right)\\m=5\left(L\right)\end{matrix}\right.\)

Vậy `m=-1`.

a: \(\Delta=\left(-5\right)^2-4\cdot1\cdot\left(m-2\right)=25-4m+8=-4m+33\)

Để phương trình có nghiệm thì -4m+33>=0

=>-4m>=-33

hay m<=33/4

Theo đề, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5}{3}\\x_1=\dfrac{10}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=m-2\)

=>m-2=50/9

hay m=68/9

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow5^2-2\left(m-2\right)=6\)

=>25-2(m-2)=6

=>2(m-2)=19

=>m-2=19/2

hay m=23/2

d: \(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=14\)

\(\Leftrightarrow25-4\left(m-2\right)=196\)

=>4(m-2)=-171

=>m-1=-171/4

hay m=-163/4

NV
18 tháng 3 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+m-1\right)\ge0\)

\(\Leftrightarrow m+2\ge0\Rightarrow m\ge-2\)

Khi đó theo hệ thức Viet : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m+1\right)^2-2\left(m^2+m-1\right)=2m^2+6m+6\)

18 tháng 3 2021

x2 - 2(m + 1)x + m2 + m - 1 = 0

\(\Delta\) = [-2(m + 1)]2 - 4.1.(m2 + m - 1) = 4(m2 + 2m + 1) - 4m2 - 4m + 4 = 4m2 + 8m + 4 - 4m2 - 4m + 4 = 4m + 8

Để pt có nghiệm thì \(\Delta\) \(\ge\) 0 \(\Leftrightarrow\) 4m + 8 \(\ge\) 0 \(\Leftrightarrow\) m \(\ge\) -2

Với m \(\ge\) -2 ta có:

x1 = \(\dfrac{2\left(m+1\right)+\sqrt{4m+8}}{2}=m+1+\sqrt{m+2}\)

x2 = \(\dfrac{2\left(m+1\right)-\sqrt{4m+8}}{2}=m+1-\sqrt{m+2}\)

x1 + x2 = m + 1 + \(\sqrt{m+2}\) + m + 1 - \(\sqrt{m+2}\) = 2m + 2

x1x2 = (m + 1 + \(\sqrt{m+2}\))(m + 1 - \(\sqrt{m+2}\)) = (m + 1)2 - m - 2 = m2 + 2m + 1 - m - 2 = m2 + m - 1 = \(\left(m+\dfrac{1-\sqrt{5}}{2}\right)\left(m+\dfrac{1+\sqrt{5}}{2}\right)\)

(x1)2 + (x2)2 = (m + 1 + \(\sqrt{m+2}\))2 + (m + 1 - \(\sqrt{m+2}\))2 = (x1 + x2)2 - 2x1x2 = (2m + 2)2 - 2(m2 + m - 1) = 4m2 + 8m + 4 - 2m2 - 2m + 2 = 2m2 + 6m + 6 = 2(m2 + 3m + 3)

Chúc bn học tốt!

Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m+1\right)\)

\(=\left(-2m+2\right)^2-4\left(m+1\right)\)

\(=4m^2-8m+4-4m-4\)

\(=4m^2-12m\)

Để phương trình có nghiệm thì \(\text{Δ}\ge0\)

\(\Leftrightarrow4m^2-12m\ge0\)

\(\Leftrightarrow4m\left(m-3\right)\ge0\)

\(\Leftrightarrow m\left(m-3\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\)

Khi \(\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\), Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=m+1\end{matrix}\right.\)

Ta có: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

\(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1\cdot x_2}=4\)

\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\)

\(\Leftrightarrow\dfrac{\left(2m-2\right)^2-2\cdot\left(m+1\right)}{m+1}=4\)

\(\Leftrightarrow4m^2-8m+4-2m-2=4\left(m+1\right)\)

\(\Leftrightarrow4m^2-10m+2-4m-4=0\)

\(\Leftrightarrow4m^2-14m-2=0\)

Đến đây bạn tự làm nhé, chỉ cần tìm m và đối chiều với điều kiện thôi

30 tháng 3 2021

Pt có 2 nghiệm

\(\to \Delta=[-2(m-1)]^2-4.1.(m+1)=4m^2-8m+4-4m-4=4m^2-12m\ge 0\)

\(\leftrightarrow m^2-3m\ge 0\)

\(\leftrightarrow m(m-3)\ge 0\)

\(\leftrightarrow \begin{cases}m\ge 0\\m-3\ge 0\end{cases}\quad or\quad \begin{cases}m\le 0\\m-3\le 0\end{cases}\)

\(\leftrightarrow m\ge 3\quad or\quad m\le 0\)

Theo Viét

\(\begin{cases}x_1+x_2=2(m-1)\\x_1x_2=m+1\end{cases}\)

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

\(\leftrightarrow \dfrac{x_1^2+x_2^2}{x_1x_2}=4\)

\(\leftrightarrow \dfrac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=4\)

\(\leftrightarrow \dfrac{[2(m-1)]^2-2.(m+1)}{m+1}=4\)

\(\leftrightarrow 4m^2-8m+4-2m-2=4(m+1)\)

\(\leftrightarrow 4m^2-10m+2-4m-4=0\)

\(\leftrightarrow 4m^2-14m-2=0\)

\(\leftrightarrow 2m^2-7m-1=0 (*)\)

\(\Delta_{*}=(-7)^2-4.2.(-1)=49+8=57>0\)

\(\to\) Pt (*) có 2 nghiệm phân biệt

\(m_1=\dfrac{7+\sqrt{57}}{2}(TM)\)

\(m_2=\dfrac{7-\sqrt{57}}{2}(TM)\)

Vậy \(m=\dfrac{7\pm \sqrt{57}}{2}\) thỏa mãn hệ thức

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Không tồn tại giá trị nào của $m$ thỏa mãn, vì $x_1^2+x_2^2+2019\geq 2019>0$ với mọi $m\in\mathbb{R}$

28 tháng 5 2021

Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)

Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)

\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)

\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)

\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)

\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)

Vậy m=1

Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)

Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)

  \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)

  \(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)

  \(\Leftrightarrow...\)