K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Điểm D ở đâu vậy bạn?

Điểm D ở đâu vậy bạn?

16 tháng 1 2022

MK cắt (o) tại D

1 tháng 12 2023

O A B M H C D K F I

a/

Xét tg vuông AMO và tg vuông BMO có

MA=MB (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)

OA=OB=R

=> tg AMO = tg BMO (2 tg vuông có 2 cạnh góc vuông bằng nhau)

\(\Rightarrow\widehat{AMO}=\widehat{BMO}\)

Xét tg MAB có

MA=MB (cmt) => tg MAB cân tại M

\(\widehat{AMO}=\widehat{BMO}\) (cmt)

\(\Rightarrow OM\perp AB\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)

Xét tg vuông AMO có

\(AM^2=MO.MH\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

b/

Ta có \(\widehat{ADC}=90^o\) (góc nt chắn nửa đường tròn) => tg ACD vuông tại D \(\Rightarrow AD\perp MC\)

Xét tg vuông AMC có

\(AM^2=MD.MC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Ta có

\(AM^2=MO.MH\) (cmt)

\(\Rightarrow MH.MO=MD.MC\)

c/ Xét tg AMK có

\(OM\perp AB\left(cmt\right)\Rightarrow OH\perp AK\)

\(AD\perp MC\left(cmt\right)\Rightarrow AD\perp MK\)

\(\Rightarrow KI\perp AB\) (trong tg 3 đường cao đồng quy)

Phần còn lại không biết điểm E là điểm nào?

 

 

Xét (O) có

OC là bán kính

FC\(\perp\)CO tại C

Do đó: FC là tiếp tuyến của (O)

Xét (O) có

FC,FA là các tiếp tuyến

Do đó: FC=FA và OF là phân giác của góc AOC

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB và OM là phân giác của góc AOB

Ta có: OF là phân giác của góc AOC

=>\(\widehat{AOC}=2\cdot\widehat{AOF}\)

Ta có: OM là phân giác của góc AOB

=>\(\widehat{AOB}=2\cdot\widehat{AOM}\)

Ta có: \(\widehat{AOB}+\widehat{AOC}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{AOF}+\widehat{AOM}\right)=180^0\)

=>\(2\cdot\widehat{FOM}=180^0\)

=>\(\widehat{FOM}=90^0\)

Xét ΔFOM vuông tại O có OA là đường cao

nên \(AF\cdot AM=OA^2\)

mà AF=CF và BM=MA

nên \(CF\cdot MB=OA^2=R^2\)

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp

Xét (O) có

ΔADC nội tiếp

AC là đường kính

Do đó: ΔADC vuông tại D

Xét ΔCAM vuông tại A có AD là đường cao

nên \(AM^2=MB^2=MD\cdot MC\)

b: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của BA

hay MO⊥AB

Xét ΔMAO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2=MC\cdot MD\)

a: Xét ΔOAM vuông tại A có 

\(OM^2=OA^2+AM^2\)

hay \(AM=5\sqrt{3}\left(cm\right)\)

26 tháng 12 2022

Nội tiếp chắn nửa đg tròn hả bạn :^?

 

a: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

b; Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB

6 tháng 12 2023

bạn ơi cho mình xin hình vẽ được không

 

15 tháng 7 2021

ACBD nội tiếp \(\Rightarrow\angle ACD=\angle ABD=\angle HBD\)

Xét \(\Delta MAC\) và \(\Delta MDA:\) Ta có: \(\left\{{}\begin{matrix}\angle MAC=\angle MDA\\\angle DMAchung\end{matrix}\right.\)

\(\Rightarrow\Delta MAC\sim\Delta MDA\left(g-g\right)\Rightarrow\dfrac{MA}{MD}=\dfrac{MC}{MA}\Rightarrow MA^2=MC.MD\)

Vì MA,MB là tiếp tuyến \(\Rightarrow\Delta MAB\) cân tại M có MO là phân giác \(\angle AMB\)

\(\Rightarrow MO\bot AB\)

tam giác MAO vuông tại A có AH là đường cao \(\Rightarrow MA^2=MH.MO\)

\(\Rightarrow MH.MO=MC.MD\Rightarrow\dfrac{MH}{MD}=\dfrac{MC}{MO}\)

Xét \(\Delta MHC\) và \(\Delta MDO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{MH}{MD}=\dfrac{MC}{MO}\\\angle DMOchung\end{matrix}\right.\)

\(\Rightarrow\Delta MHC\sim\Delta MDO\left(c-g-c\right)\Rightarrow\angle MHC=\angle MDO\Rightarrow CHOD\) nội tiếp

Ta có: \(\angle BHD=90-\angle DHO=90-\angle DCO\) (CHOD nội tiếp)

\(=90-\dfrac{180-\angle COD}{2}=90-90+\dfrac{1}{2}\angle COD=\angle CAD\)

Xét \(\Delta BHD\) và \(\Delta CAD:\) Ta có: \(\left\{{}\begin{matrix}\angle CAD=\angle BHD\\\angle ACD=\angle HBD\end{matrix}\right.\)

\(\Rightarrow\Delta BHD\sim\Delta CAD\left(g-g\right)\Rightarrow\dfrac{BH}{CA}=\dfrac{BD}{CD}\Rightarrow BH.CD=BD.CA\)

undefined

16 tháng 7 2021

Cảm ơn ạ