Tìm tất cả các giá trị thực của tham số a sao cho hàm số y = 1/3.x3 - 1/2.x2 + ax + 1 đạt cực trị tại x1, x2 thỏa mãn: (x12 + x2 + 2a)(x22 + x1 + 2a) = 9.
giúp ik mọi người
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Ta có y ' = 3 x 2 + 4 m − 2 x − 5 ; y ' = 0 ⇔ 3 x 2 + 4 m − 2 x − 5 = 0 (*).
Phương trình (*) có a c < 0 nên luôn có hai nghiệm trái dấu .
Suy ra x 1 = − x 1 ; x 2 = x 2 .
Khi đó x 1 , x 2 là hai điểm cực trị của hàm số.
x 1 − x 2 = − 2 ⇔ − x 1 − x 2 = − 2 ⇔ x 1 + x 2 = 2 ⇔ − 4 m − 2 3 = 2 ⇔ m = 1 2
Từ yêu cầu bài toán suy ra phương trình y ' = 0 có hai nghiệm phân biệt x 1 x 2 thỏa mãn x 1 - x 2 = - 2 .
Nhận thấy phương trình
nên y ' = 0 có hai nghiệm trái dấu x 1 < 0 < x 2
Theo hệ thức Vi-ét ta có
Chọn C.
Chọn B
[Phương pháp tự luận]
y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 )
Hàm số luôn luôn có cực trị với moi m
Theo định lí Viet
x 1 + x 2 = 2 m x 1 . x 2 = m 2 - 1
x 1 2 + x 2 2 - x 1 x 2 = 7
⇔ ( 2 m ) 2 - 3 ( m 2 - 1 ) = 7
⇔ m = ± 2
Chọn A.
Phương pháp : Sử dụng đạo hàm và đặc trưng cực trị hàm số đa thức bậc ba.
Chọn D.
Ta có:
Để hàm số có hai cực trị x1, x2 thì phương trình (1) có hai nghiệm phân biệt.
Khi đó:
Mà theo yêu cầu bài toán x1, x2 thỏa mãn: x 1 2 + x 2 2 = 6
Mặt khác theo Vi-et ta có:
thay vào (2) ta được thỏa mãn điều kiện (*).
Vậy m = -3.