K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 3 2021

\(\frac{2n-5}{3-n}=\frac{2n-6+1}{3-n}=-2+\frac{1}{3-n}\inℤ\)

Suy ra \(\frac{1}{3-n}\inℤ\Rightarrow\left(3-n\right)\inƯ\left(1\right)=\left\{-1,1\right\}\Rightarrow n\in\left\{4,2\right\}\)

22 tháng 1

a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2

=> (n - 2) + 3 ⋮ n - 2

 Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}

 => n ∈ {-1;1;3;5}

b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1

=> (4n - 2) + 7 ⋮ 2n - 1

=> 2(2n - 1) + 7 ⋮ 2n - 1

 Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1

=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}

=> n ∈ {-3;0;1;4}

30 tháng 7 2018

A=\(\frac{2n+5}{n-3}\)=\(\frac{n-3+n+8}{n-3}\)=\(1+\frac{n+8}{n-3}\)=\(1+\frac{n-3+11}{n-3}\)=\(2+\frac{11}{n-3}\) Đk \(n\ne3\)

\(2\in Z\)nên \(\frac{11}{n-3}\in Z\)\(\Rightarrow n-3\inƯ\left(11\right)=\left(1;-1;11;-11\right)\)

+)\(n-3=1\Leftrightarrow n=4\)(TM đk)

+)\(n-3=-1\Leftrightarrow n=2\)(TM đk)

+)\(n-3=11\Leftrightarrow n=14\)(TMđk)

+)\(n-3=-11\Leftrightarrow n=-8\)(TM đk)

Vậy x={4;2;14;-8} thì A\(\in\)Z

30 tháng 7 2018

ĐK: \(n\ne3\)

\(A=\frac{2n-5}{n-3}=\frac{2n-3-2}{n-3}=\frac{2n-3}{n-3}-\frac{2}{n-3}\)\(=2-\frac{2}{n-3}\)

Để \(A\inℤ\Leftrightarrow2-\frac{2}{n-3}\inℤ\Leftrightarrow\frac{2}{n-3}\inℤ\)\(\Leftrightarrow n-3\inƯ\left(2\right)\Leftrightarrow n-3\in\left\{\pm1;\pm3\right\}\)\(\Leftrightarrow n\in\left\{4;2;6;0\right\}\)

a: Để A là phân số thì n-2<>0

=>n<>2

Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)

b: Để A nguyên thì 2n+1 chia hết cho n-2

=>2n-4+5 chia hết cho n-2

=>\(n-2\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{3;1;7;-3\right\}\)

20 tháng 4 2021

\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Để A nguyên thì 1/n+3 nguyên

hay n + 3 thuộc Ư(1) = { 1 ; -1 ]

=> n thuộc { -2 ; -4 } thì A nguyên

b: Để A nguyên thì 2n+3 chia hết cho n

=>3 chia hết cho n

=>n thuộc {1;-1;3;-3}

c: Th1: n=2

=>n+3=5(nhận)

TH2: n=2k+1

=>n+3=2k+4=2(k+2)

=>Loại

d: Gọi d=ƯCLN(2n+3;2n+5)

=>2n+5-2n-3 chia hết cho d

=>2 chia hết cho d

mà 2n+3 lẻ

nên d=1

=>PSTG

1 tháng 9 2016

a/ Gọi ƯCLN(2n+5,n+3) = d \(\left(d\ge1\right)\)

Ta có : \(\begin{cases}2n+5⋮d\\n+3⋮d\end{cases}\) \(\Rightarrow\begin{cases}2n+5⋮d\\2n+6⋮d\end{cases}\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d\le1\)

mà \(d\ge1\Rightarrow d=1\)

Từ đó có đpcm

 

1 tháng 9 2016

Ta có \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Để B là số nguyên thì \(n+3\inƯ\left(1\right)\)

Xét các trường hợp sẽ ra

22 tháng 4 2019

\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=2-\frac{1}{n+3}\)

Để A có giá trị là số nguyên 

=> 1 chia hết cho n + 3

=> \(n+3\inƯ\left(1\right)\)

=> \(n+3\in\left\{1;-1\right\}\)

=> \(n\in\left\{-2;-4\right\}\)

Vậy A có giá trị là số nguyên khi n = -2 hoặc n = -4

22 tháng 4 2019

để A nguyên \(\Rightarrow2n+5⋮n+3\)

\(\Rightarrow\left(2n+6\right)-1⋮n+3\)

\(\Rightarrow n+3\text{là}Ư_1\in\left\{\pm1\right\}\)

Ta có bảng sau
\(n+3\)1-1
\(n\)-2-4

      Vậy \(n\in\left\{-2;-4\right\}\)

29 tháng 4 2017

2n\(\ne\) 0

2n=0

n=0/2=0

=>n\(\ne\) 2 thì 4/2n là phân số

29 tháng 4 2017

để 4/2n là số nguyên thi 4\(⋮\) 2n

=>2n\(\in\) Ư (4)

2n=1

n=1/2 loại

2n=2

n=2/2=1 chọn

2n=4

n=4/2=2 chọn

Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{1;0;3;-2\right\}\)

7 tháng 1 2023

      `2n^2+3n+3 | 2n-1`

`-`   `2n^2-n`           `n+2`

     ------------------

                `4n+3`

          `-`   `4n-2`

              ------------

                       `5`

`<=> (2n^2+3n+3) : (2n-1)=5`

`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)

`+, 2n-1=1=>2n=2=>n=1`

`+, 2n-1=-1=>2n=0=>n=0`

`+, 2n-1=5=>2n=6=>n=3`

`+,2n-1=-5=>2n=-4=>n=-2`

vậy \(n\in\left\{1;0;3;-2\right\}\)

20 tháng 3 2018

Để A=\(\frac{2n-1}{3-n}\)là 1 số nguyên thì : 2n-1\(⋮\)3-n(1)

Ta lại có : 3-n\(⋮\)3-n <=> 2(3-n)\(⋮\)3-n <=> 6-2n\(⋮\)3-n(2)

Từ (1) và (2) suy ra : (2n-1)+(6-2n)\(⋮\)3n-1<=>5\(⋮\)3n-1 =>3n-1 \(\in\)Ư(5)

Mà Ư(5)=(1;-1;5;-5) nên ta có bảng sau

     

sai ở bảng trên , bảng đúng đây nè :

3n-11-15-5
n3/202-4/3

   Mà n là số nguyên nên n\(\in\)(0;2) thì A có giá trị là số nguyên

21 tháng 3 2018

Bạn Hiểu Ngân ơi,phần dưới kia phải là (2n-1) +(6-2n) chia hết cho (3-n) chứ