K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1 2022

Trong mp (SAB), qua M kẻ đường thẳng song song SB cắt AB tại G \(\Rightarrow G\in\left(P\right)\)

Trong mp (SAC), qua M kẻ đường thẳng song song AC cắt SC tại E \(\Rightarrow E\in\left(P\right)\)

Trong mp (ABCD), qua G kẻ đường thẳng song song AC, lần lượt cắt BC tại F và AD kéo dài tại H

\(\Rightarrow F;H\in\left(P\right)\)

Trong mp (SAD), nối HM kéo dài cắt SD tại I

\(\Rightarrow\) Ngũ giác EFGMI là thiết diện của (P) và chóp

NV
14 tháng 1 2022

undefined

4 tháng 9 2021

undefined

(α) và (SAD) cùng chứa điểm M. Mà (α) // AD nên (α) \(\cap\) (SAD) = d1 với d1 là đường thẳng đi qua M và song song với AD. 

Trong (SAD) gọi H = d1 \(\cap\) SA ⇒ (SAD) \(\cap\) (α) = MH

(α) và (SBD) cùng chứa điểm M. Mà (α) // SB nên (α) \(\cap\) (SBD) = d2 với d2 là đường thẳng đi qua M và song song với SB. 

Trong (SBD) gọi G = d2 \(\cap\) BD ⇒ (SAD) \(\cap\) (α) = MG

(SAB) và (α) cùng chứa điểm H. Mà (SAB) chứa SB, (α) chứa MG và ta lại có MG // SB

⇒ (SAB) \(\cap\) (α) = d3 với d3 là đường thẳng đi qua H và song song với SB và MG

Trong (SAB) gọi J = \(d_3\cap AB\) ⇒ (SAB) \(\cap\) (α) = HJ

Trong (ABCD) gọi K = JG \(\cap\) CD

Thiết diện cần tìm là tứ giác HMKJ (hình thang hai đáy HM, JK)

*Lưu ý : (α) không cắt (SBC) vì (α) // (SBC). 

\(\cap\)

27 tháng 9 2019

NV
30 tháng 6 2021

Chắc là mp (P) đi qua A'

Đặt \(V_{SABCD}=V\)

Theo định lý Talet: \(\dfrac{SA'}{SA}=\dfrac{SB'}{SB}=\dfrac{SC'}{SC}=\dfrac{SD'}{SD}=\dfrac{3}{4}\)

Ta có: \(\dfrac{V_{SA'B'C'D'}}{V_{SABCD}}=\dfrac{2V_{SA'B'C'}}{2V_{SABC}}=\dfrac{V_{SA'B'C'}}{V_{SABC}}=\dfrac{SA'}{SA}.\dfrac{SB'}{SB}.\dfrac{SC'}{SC}=\dfrac{3}{4}.\dfrac{3}{4}.\dfrac{3}{4}=\dfrac{27}{64}\)

Tỉ số thể tích 2 phần (phần trên chia phần dưới) là: \(\dfrac{27}{64}:\left(1-\dfrac{27}{64}\right)=\dfrac{27}{37}\)

27 tháng 8 2019

Đáp án D

Qua O dựng đường thẳng P Q ∥ A B . Vậy P, Q lần lượt là trung điểm của AD và BC.

Qua P dựng đường thẳng P N ∥ S A . Vậy N là trung điểm của SD

Qua Q dựng đường thẳng Q M ∥ S B . Vậy M là trung điểm của SC.

Nối M và N thiết diện của (P) và hình chóp S.ABCD là tứ giác MNPQ.

Vì P Q ∥ C D , M N ∥ C D ⇒ P Q ∥ M N . Vậy tứ giác MNPQ là hình thang.

Ta có P Q = A B = 8 $ , M N = 1 2 A B = 4, M Q = N P = 1 2 S A = 3 . Vậy MNPQ là hình thang cân.

Gọi H là chân đường cao hạ từ đỉnh M của hình thang MNPQ. Khi đó ta có 

H Q = 1 4 P Q = 2 ⇒ M H = M Q 2 − H Q 2 = 5

Vậy diện tích của thiết diện cần tìm là  S = ( M N + P Q ) M H 2 = 6 5 .

9 tháng 11 2016

tại M kẻ đt //BC cắt AB tại I và CD tại K

tại M kẻ đt d // SA,cắt (SBC) tại N, qua N kẻ đt // IK và cắt SB tại E, cắt SC tại F.

Nối E,F,K,I ta đc 1 tứ giác là thiết diện của hình chóp :)