Cho tam giác ABC có AB=AC=5cm và BC=8cm kẻ AH vuông góc với BC. tính độ dài AH( ghi giả thiết và kết luận)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(Hai cạnh tương ứng) và \(\widehat{BAH}=\widehat{CAH}\)(Hai góc tương ứng)
a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).
=> AH là đường phân giác góc A (Tính chất tam giác cân).
b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).
=> AH là đường trung tuyến (Tính chất tam giác cân).
=> H là trung điểm của BC.
=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).
Xét tam giác AHB vuông tại A:
Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).
=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)
=> AH = 3 (cm).
c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:
AH chung.
Góc DAH = Góc EAH (AH là đường phân giác góc A).
=> Tam giác AHD = Tam giác AHE (ch - gn).
=> HD = HE (2 cạnh tương ứng).
=> Tam giác DHE cân tại H.
a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:
AH: chung
AB=AC (gt)
=>Tam giác ABH=tam giác ACH (cạnh huyền-cạnh góc vuông)
=>HB=HC (2 cạnh tương ứng)
b)Vì HB=HC (câu a) => HB=HC=BC:2=8:2=4 (cm)
Xét tam giác ABH vuông tại H có: AB2 = AH2 + BH2 (định lý Py-ta-go)
52 = AH2 + 42
AH2 = 52 - 42 = 25-16=9
AH=\(\sqrt{9}=3\)
c) Vì tam giác ABH=tam giác ACH (câu a) => góc BAH=góc CAH (2 góc tương ứng)
Xét tam giác ADH vuông tại D và tam giác AEH vuông tại E có:
AH: chung
góc BAH=góc CAH (cmt)
=> Tam giác ADH=tam giác AEH (cạnh huyền-góc nhọn)
=>HD=HE (2 cạnh tương ứng)
=>tam giác DHE cân tại H
d) Tam giác EHC vuông tại E có HC là cạnh huyền =>HC là cạnh lớn nhất trong tam giác EHC hay HC>HE
Mà HE=HD (cmt) => HC>HD
Bài 3:
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
b) Ta có: BH=CH(cmt)
mà BH+CH=BC(H nằm giữa B và C)
nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)
hay AH=3(cm)
Vậy: AH=3(cm)
c) Xét ΔDBH vuông tại D và ΔECH vuông tại E có
BH=CH(cmt)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔDBH=ΔECH(cạnh huyền-góc nhọn)
Suy ra: HD=HE(hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)
Trả lời:
a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)
Có: AB = AC(gt)
Góc ABH = góc ACH(gt)
=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)
=>HB = HC (2 cạnh tương ứng)
=>Góc CAH = góc BAH( 2 góc tương ứng)
b) Ta có: HB = HC = BC2=82=4(cm)BC2=82=4(cm)
ΔABHΔABH vuông tại H, theo định lí Py-ta-go
Ta có: AB2 = AH2 + HB2
=> AH2 = AB2 - HB2
AH2 = 52 - 42
AH2 = 9
Vậy: AH = 9–√=3(cm)9=3(cm)
c) Xét hai tam giác vuông BDH và CEH có:
HB = HC (cmt)
Bˆ=CˆB^=C^ (do ΔABCΔABC cân tại A)
Vậy: ΔBDH=ΔCEH(ch−gn)ΔBDH=ΔCEH(ch−gn)
Suy ra: HD = HE (hai cạnh tương ứng)
Do đó: ΔHDEΔHDE cân tại H
~Học tốt!~
a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)
Có: AB=AC(gt)
Góc ABH = góc ACH(gt)
=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)
=>HB=HC (2 cạnh tương ứng)
=>Góc CAH = góc BAH( 2 góc tương ứng)
b/ Ta có :HB=HC( cmt)
=> H trung điểm BC
Ta có: HB=HC=BC/2=8/2=4 (cm)
Xét tam giác ABH vuông tại H
Có AB^2= AH^2+HB^2 (pytago)
=>AH^2= AB^2-HB^2
AH^2= 5^2-4^2
AH^2=25-16
AH^2=9
AH= căng 9
=> AH= 3cm
Vậy AH=3cm
c/ Xét tam giác ADH( góc D=90 độ) và tam giác AEH ( góc E = 90 độ)
Có: AH chung
Góc DAH= góc EAH ( tam giác ABH= tam giác ACH)
=> tam giác ADH= tam giác AEH ( cạnh huyền - góc nhọn)
=> AD=AE ( 2 cạnh tương ứng)
=> Tam giác ADE cân tại A ( 2 cạnh bên bằng nhau)
Xét tam giác ABC cân tại A(gt)
Có: Góc B= (180 độ - góc A)/2 (định lí)
Xét tam giác ADE cân tại A (cmt)
Có: Góc D= (180 độ - góc A)/2 (định lí)
=> Góc B= Góc D ( =(180 độ - góc A)/2)
=> DE//BC ( 2 góc đồng vị bằng nhau)
Ta có: AB = AC = 5cm
=> tam giác ABC cân tại A
=>AH vừa là đường cao, vừa là đường trung trực của tam giác ABC
=>BH=CH= 8/2= 4cm
Tam giác AHB vuông tại H
=> AH2 + BH2 = AB2
AH2 + 42 = 52
AH2 + 16 =25
=> AH2 = 25 - 16 = 9
=> AH = căn bậc hai của 9 = 3 cm
(mình giải xong rồi ! Các bạn cứ vẽ hình sẽ hiểu ngay...hì hì)