K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

nhầm tớ lộn sang bài khác sorry

27 tháng 1 2016

trình bày cách giải giùm với nhé

 

AH
Akai Haruma
Giáo viên
8 tháng 9 2024

Lời giải:

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\\ 3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\\ \Rightarrow 2A=3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(2A+\frac{100}{3^{100}}=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3(2A+\frac{100}{3^{100}})=3+1+\frac{1}{3}+....+\frac{1}{3^{98}}\)

\(\Rightarrow 3(2A+\frac{100}{3^{100}})-(2A+\frac{100}{3^{100}})=3-\frac{1}{3^{99}}\)

\(2(2A+\frac{100}{3^{100}})=3-\frac{1}{3^{99}}\\ A=\frac{3}{4}-\frac{1}{4.3^{99}}-\frac{100}{3^{100}}< \frac{3}{4}\)

AH
Akai Haruma
Giáo viên
8 tháng 9 2024

** Sửa đề:

CMR \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)