Cho tam giác DEF,điểm I nằm trong tam giác và cách đều ba cạnh của nó. Chứng minh Ilà điểm chung của ba đường phân giác của tam giác DEF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi IH, IK, IL lần lượt là khoảng cách từ I đến EF, DF, DE.
Theo đề bài, điểm I cách đều ba cạnh của ΔDEF ⇒ IH = IK = IL
IL = IK ⇒ I cách đều hai cạnh của góc D ⇒ I nằm trên đường phân giác của góc D.
IH = IK ⇒ I cách đều hai cạnh của góc F ⇒ I nằm trên đường phân giác của góc F.
IH = IL ⇒ I cách đều hai cạnh của góc E ⇒ I nằm trên đường phân giác của góc E.
Từ 3 điều trên suy ra I là điểm chung của ba đường phân giác của tam giác DEF.
Hướng dẫn:
I nằm trong ∆DEF và cách đều ba cạnh của tam giác nên I lần lượt thuộc phân giác của các góc ˆDD^, ˆEE^, ˆFF^
Vậy I là điểm chung của ba đường phân giác của tam giác DEF
I nằm trong ∆DEF và cách đều ba cạnh của tam giác nên I lần lượt thuộc phân giác của các góc , ,
Vậy I là điểm chung của ba đường phân giác của tam giác DEF
I nằm trong ∆DEF và cách đều ba cạnh của tam giác nên I lần lượt thuộc phân giác của các góc ∠D, ∠E , ∠F
Vậy I là điểm chung của ba đường phân giác của tam giác DEF
mà hình như là đại học sư phạm rồi mà.bài dễ thế mà không biết làm à
Kẻ IA⊥ED tại A, IB⊥EF tại B, IC⊥DF tại C
Vì I cách đều ba cạnh nên IA=IB=IC
Xét ΔIAE vuông tại A và ΔIBE vuông tại B có
IE chung
IA=IB(cmt)
Do đó: ΔIAE=ΔIBE(Cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{AEI}=\widehat{BEI}\)(hai góc tương ứng)
\(\Leftrightarrow\widehat{DEI}=\widehat{FEI}\)
hay EI là tia phân giác của \(\widehat{DEF}\)(1)
Xét ΔICF vuông tại C và ΔIBF vuông tại B có
IF chung
IC=IB(cmt)
Do đó: ΔICF=ΔIBF(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{BFI}=\widehat{CFI}\)(hai góc tương ứng)
\(\Leftrightarrow\widehat{EFI}=\widehat{DFI}\)
hay FI là tia phân giác của \(\widehat{EFD}\)(2)
Xét ΔDAI vuông tại A và ΔDCI vuông tại C có
DI chung
IA=IC(cmt)
Do đó: ΔDAI=ΔDCI(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{ADI}=\widehat{CDI}\)(hai góc tương ứng)
\(\Leftrightarrow\widehat{EDI}=\widehat{FDI}\)
hay DI là tia phân giác của \(\widehat{EDF}\)(3)
Từ (1), (2) và (3) suy ra I là điểm chung của ba đường phân giác trong của ΔDEF(Đpcm)
Giả sử hai tia phân giác của các góc ngoài tại đỉnh B và C của tam giác ABC cắt nhau tại O. Ta sẽ chứng minh AO là tia phân giác của góc A.
Kẻ các đường vuông góc OH, OI, OK từ O lần lượt đến các đường thẳng AB, BC, AC.
Vì BO là tia phân giác của góc HBC nên OH = OI (1)
Vì CO là tia phân giác của góc KCB nên OI = OK (2)
Từ (1) và (2) suy ra OI = OH = OK
(3)
Suy ra: O thuộc đường phân giác của góc BAC.
Suy ra AO là tia phân giác của góc BAC và ta có điều phải chứng minh.