K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

Giải bài 36 trang 72 SGK Toán 7 Tập 2 | Giải toán lớp 7

Gọi IH, IK, IL lần lượt là khoảng cách từ I đến EF, DF, DE.

Theo đề bài, điểm I cách đều ba cạnh của ΔDEF ⇒ IH = IK = IL

IL = IK ⇒ I cách đều hai cạnh của góc D ⇒ I nằm trên đường phân giác của góc D.

IH = IK ⇒ I cách đều hai cạnh của góc F ⇒ I nằm trên đường phân giác của góc F.

IH = IL ⇒ I cách đều hai cạnh của góc E ⇒ I nằm trên đường phân giác của góc E.

Từ 3 điều trên suy ra I là điểm chung của ba đường phân giác của tam giác DEF.

19 tháng 4 2017

Hướng dẫn:

I nằm trong ∆DEF và cách đều ba cạnh của tam giác nên I lần lượt thuộc phân giác của các góc ˆDD^, ˆEE^, ˆFF^

Vậy I là điểm chung của ba đường phân giác của tam giác DEF

19 tháng 4 2017

I nằm trong ∆DEF và cách đều ba cạnh của tam giác nên I lần lượt thuộc phân giác của các góc D^, E^, F^

Vậy I là điểm chung của ba đường phân giác của tam giác DEF

27 tháng 8 2016

I D E F

I nằm trong ∆DEF và cách đều ba cạnh của tam giác nên I lần lượt thuộc phân giác của các góc ∠D, ∠E , ∠F

Vậy I là điểm chung của ba đường phân giác của tam giác DEF

27 tháng 8 2016

mà hình như là đại học sư phạm rồi mà.bài dễ thế mà không biết làm à

Kẻ IA⊥ED tại A, IB⊥EF tại B, IC⊥DF tại C

Vì I cách đều ba cạnh nên IA=IB=IC

Xét ΔIAE vuông tại A và ΔIBE vuông tại B có 

IE chung

IA=IB(cmt)

Do đó: ΔIAE=ΔIBE(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{AEI}=\widehat{BEI}\)(hai góc tương ứng)

\(\Leftrightarrow\widehat{DEI}=\widehat{FEI}\)

hay EI là tia phân giác của \(\widehat{DEF}\)(1)

Xét ΔICF vuông tại C và ΔIBF vuông tại B có 

IF chung

IC=IB(cmt)

Do đó: ΔICF=ΔIBF(cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{BFI}=\widehat{CFI}\)(hai góc tương ứng)

\(\Leftrightarrow\widehat{EFI}=\widehat{DFI}\)

hay FI là tia phân giác của \(\widehat{EFD}\)(2)

Xét ΔDAI vuông tại A và ΔDCI vuông tại C có 

DI chung

IA=IC(cmt)

Do đó: ΔDAI=ΔDCI(cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{ADI}=\widehat{CDI}\)(hai góc tương ứng)

\(\Leftrightarrow\widehat{EDI}=\widehat{FDI}\)

hay DI là tia phân giác của \(\widehat{EDF}\)(3)

Từ (1), (2) và (3) suy ra I là điểm chung của ba đường phân giác trong của ΔDEF(Đpcm)

13 tháng 4 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Giả sử hai tia phân giác của các góc ngoài tại đỉnh B và C của tam giác ABC cắt nhau tại O. Ta sẽ chứng minh AO là tia phân giác của góc A.

Kẻ các đường vuông góc OH, OI, OK từ O lần lượt đến các đường thẳng AB, BC, AC.

Vì BO là tia phân giác của góc HBC nên OH = OI (1)

Vì CO là tia phân giác của góc KCB nên OI = OK (2)

Từ (1) và (2) suy ra OI = OH = OK

(3)

 

Suy ra: O thuộc đường phân giác của góc BAC.

Suy ra AO là tia phân giác của góc BAC và ta có điều phải chứng minh.

4 tháng 12 2021

Chịu rồi!!!