K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) áp dụng ct b=2RsinB ta có 2R(sinB+sinC)=2(r+R) 
chia cả 2 cho 2R ta được sinB+sinC=1+r/R 
mà ta có hệ thức cosa+cosb+cosc=1+r/R (cái này nếu bạn ko biết thì hãy tự cm nhé ,dễ lắm chỉ cần dùng lượng giác một cách khéo là đc thui) 
áp dụng vào bài với chú ý Â=90 thì ta có sinb+sinc=cosb+cosc.điều này hiển nhiên đúng với tam giác vuông tại A 
b) ta có S=pr. từ câu trên ta có a+b+c=2(R+r+RsinA).sina đã biết ,từ đó ta có kết quả 
c)gọi o là tâm ngoại tiếp thì o là trung điểm BC, i là tâm nội tiếp từ i bạn hạ 3 bán kính nội tiếp. ở đây mình hạ bán kính với cạnh BC là IE bạn có tính được BE ko (dễ lắm) với ct S ở trên bạn tính dược r chú ý IOE là tam giác vuông ở E áp dụng pitago là được. 
đây là cách giải khác sau khi mình hiểu trình độ của bạn 
a) cm ct S=pr.từ tâm i bạn hạ ie ứng với bc, ì ứng vớiab ,ih ứng với ac .đặt be=z .ah=x,hc=y ta có x+y=b ,y+z=a,z+x=c.từ đó tính được x.y.z .với chú ý Sabc=2Sbie+2Sahi+2Sihc.ta có ct trên 
Từ đó ta có S=pr=bc/c >r=2bc/a+b+c. 
(r+R)2=a+r=2bc+a2+ab+ac/a+b+c.chú ý a2=b2+c2 ta có kết quả câu a 
câu b.c thì với gợi ý trên bạn cũng có thể tự làm

a) áp dụng ct b=2RsinB ta có 2R(sinB+sinC)=2(r+R) 
chia cả 2 cho 2R ta được sinB+sinC=1+r/R 
mà ta có hệ thức cosa+cosb+cosc=1+r/R (cái này nếu bạn ko biết thì hãy tự cm nhé ,dễ lắm chỉ cần dùng lượng giác một cách khéo là đc thui) 
áp dụng vào bài với chú ý Â=90 thì ta có sinb+sinc=cosb+cosc.điều này hiển nhiên đúng với tam giác vuông tại A 
b) ta có S=pr. từ câu trên ta có a+b+c=2(R+r+RsinA).sina đã biết ,từ đó ta có kết quả 
c)gọi o là tâm ngoại tiếp thì o là trung điểm BC, i là tâm nội tiếp từ i bạn hạ 3 bán kính nội tiếp. ở đây mình hạ bán kính với cạnh BC là IE bạn có tính được BE ko (dễ lắm) với ct S ở trên bạn tính dược r chú ý IOE là tam giác vuông ở E áp dụng pitago là được. 
đây là cách giải khác sau khi mình hiểu trình độ của bạn 
a) cm ct S=pr.từ tâm i bạn hạ ie ứng với bc, ì ứng vớiab ,ih ứng với ac .đặt be=z .ah=x,hc=y ta có x+y=b ,y+z=a,z+x=c.từ đó tính được x.y.z .với chú ý Sabc=2Sbie+2Sahi+2Sihc.ta có ct trên 
Từ đó ta có S=pr=bc/c >r=2bc/a+b+c. 
(r+R)2=a+r=2bc+a2+ab+ac/a+b+c.chú ý a2=b2+c2 ta có kết quả câu a 
câu b.c thì với gợi ý trên bạn cũng có thể tự làm

22 tháng 3 2016

bằng 14 nha !

22 tháng 3 2016

lại vio kq=14 

20 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.

Ta có: BC = 2R

Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F

Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.

Suy ra: AD = AE = EO = OD = r

Theo tính chất hai tiếp tuyến cắt nhau ta có:

AD = AE

BD = BF

CE = CF

Ta có: 2R + 2r = BF + FC + AD + AE

= (BD + AD) + (AE + CE)

= AB + AC

Vậy AB = AC = 2(R + r)

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
25 tháng 8 2020

B F C O D A E

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.

Ta có: BC = 2R

Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F

Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.

Suy ra: AD = AE = EO = OD = r

Theo tính chất hai tiếp tuyến cắt nhau ta có:

AD = AE

BD = BF

CE = CF

Ta có: 2R + 2r = BF + FC + AD + AE

= ( BD + AD ) + ( AE + CE )

= AB + AC

Vậy AB = AC = 2 ( R + r )

25 tháng 8 2020

Nguồn : sachbaitap

18 tháng 1 2021

Hình như câu b chưa rõ lắm, tam giác ABC cân tại đâu?

18 tháng 1 2021

đề chỉ ghi tam giác cân thôi bạn