Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC
Ta có:\(\widehat{BAC}+\widehat{A}=180^0\) (kề bù)
<=>\(\widehat{BAC}+120^0=180^0\Rightarrow\widehat{BAC}=60^0\)
Ta có:\(\widehat{C}+\widehat{ABC}+\widehat{BAC}=180^0\)
\(\Leftrightarrow70^0+\widehat{ABC}+60^0=180^0\Rightarrow\widehat{ABC}=50^0\)
\(\Leftrightarrow\widehat{ABC}+\widehat{B}=180^0\) (KỀ BÙ)
\(\Leftrightarrow50^0+\widehat{B}=180^0\Rightarrow\widehat{B}=130^0\)
a: góc BAC=180-120=60 độ
góc ABE=70/2=35 độ
góc AEB=180-60-35=85 độ
b: góc ABE<góc BAE<góc AEB
=>AE<BE<AB
c: góc ECB=180-70-60=50 độ
góc BEC=180-85=95 độ
Vì góc EBC<góc ECB<góc BEC
nên EC<EB<BC
Ta có: góc C = 70 độ
=> góc BCI = 35 độ
=> góc IBC = 25
=> góc B = 50 độ
=> góc A = 60 độ
Vậy tam giác ABC có góc A = 60 độ; góc B = 50 độ; góc C = 70 độ
A B C K I y x
Ta có:
ICK=ICB+KCB
=1/2ACB+1/2BCx
=1/2 180=90
Hoàn toàn tương tự thì:IBK=90
Xét tứ giác BICK có:
CIB+IBC+ICB+CKB=360
=>CIB=360-(IBC+ICB+CKB)=360-235=125
Vậy các góc của tứ giác BICK là CIB=125, CKB=55
IBK=ICK=90
Vì góc ngoài đỉnh C bằng 120 độ nên \(\widehat{A}+\widehat{B}=120^0\)
Mà \(\widehat{A}-\widehat{B}=60^0\Rightarrow\left\{{}\begin{matrix}\widehat{A}=\left(120^0+60^0\right):2=90^0\\\widehat{B}=120^0-90^0=30^0\end{matrix}\right.\)
\(\Rightarrow\widehat{C}=180^0-90^0-30^0=60^0\)
A B C I 1 1 1 2 x
+) Góc xAC = góc ABC + ACB (tính chất góc ngoài tam giác)
góc A2 = xAC / 2
=> góc A2 = (góc ABC + C1) / 2 = B1 + ( C1 / 2 ) (Vì góc B1 = ABC /2 )
+) Trong tam giác AIB: góc AIB = 180o - (B1 + A1 + A2)
= 180o - (B1 + A1 +B1 + ( C1 / 2 ) )
= 180o - (2.B1 + A1 + ( C1 / 2 ) )
= 180o - (B + A1 + ( C1 / 2 ))
Mà B + A1 = 180o - C1 = 180o - 70o = 110o; C1 / 2 = 70o/ 2 = 35o
=> góc AIB = 180o - (110o + 35o) = 180o - 145o = 35o
Ta có góc C là : \(\widehat{C}=180^0-120^0=60^0\)
ta có tổng 3 góc trong một tam giác bằng 180 độ nên
\(\widehat{A}=180^0-\widehat{B}-\widehat{C}=180^0-70^0-60^0=50^0\)