Với \(p,q\in P;p,q>5\).CMR: \(p^4-q^4\)chia hết cho 240
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x< y hay a/m <b/m \(\Rightarrow\)a<b
So sánh X, Y ,Z ta chuyển chúng cùng mẫu : 2
mà a<b
Suy ra : a+a<b+a
Hay 2a < a+b
Suy ra x<z (1)
Mà a<b
Suy ra a+b<b+b
Hay a+b< 2b
Suy ra Z<y (2)
Từ (1) và (2) kết luận x < z<y
Tích nha Bạn
Liệt kê các phần tử của 2 tập hợp
a. \(A=\left\{0,1,2,3\right\}\) \(B=\left\{-2,-1,0,1,2\right\}\)
\(A\cap B=\left\{0,1,2\right\}\)
b. Có 20 tích được tạo thành
-2 | -1 | 0 | 1 | 2 | |
0 | 0 | 0 | 0 | 0 | 0 |
1 | -2 | -1 | 0 | 1 | 2 |
2 | -4 | -2 | 0 | 2 | 4 |
3 | -6 | -3 | 0 | 3 | 6 |
a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)
\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)
\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)
Vì n;n-1;n+1;n-2 là 4 số liên tiếp
nên n(n-1)(n+1)(n+2) chia hết cho 4!=24
mà -8n(n-2)(n-1) chia hết cho 24
nên A chia hết cho 24
b: \(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)
Vì đây là 5 số liên tiếp
nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)
Giúp mình với
CMR nếu \(a+b\in Z\)và \(ab\in Z\)thì \(\hept{\begin{cases}a\in Z\\b\in Z\end{cases}}\)
a) Vì 9n \(⋮\)n và 18 \(⋮\)9 => 9n + 18 \(⋮\)9 (đpcm)
b) Vì 15n \(⋮\)5 và 6 không chia hết cho 5
=> 15n + 6 không chia hết cho 5 (đpcm)
Dấu không chia hết của olm bị sai nha bạn.
a/
\(sinx=\frac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(x\in\left(0;\pi\right)\Rightarrow\left[{}\begin{matrix}0< \frac{\pi}{6}+k2\pi< \pi\\0< \frac{5\pi}{6}+k2\pi< \pi\end{matrix}\right.\) \(\Rightarrow k=0\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{5\pi}{6}\right\}\)
b.
\(\Leftrightarrow cosx=k\pi\)
Do \(-1\le cosx\le1\Rightarrow-1\le k\pi\le1\Rightarrow k=0\)
\(\Rightarrow cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\)
\(\Rightarrow x=\left\{\frac{\pi}{2};\frac{3\pi}{2}\right\}\)