chung minh
[(1+2+3+...+n)-7]ko chia het cho10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A = 2 + 22 + 23 + 24 + ... + 260
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
A = 2 ( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 258 . 7
A = ( 2 + 24 + ... + 258 ) . 7 => A \(⋮\)7
Vậy ...
2.Ta có : \(n+4⋮n+1\)
Mà : \(n+1⋮n+1\)
\(\Rightarrow\left(n+4\right)-\left(n+1\right)⋮n+1\Rightarrow n+4-n-1⋮n+1\)
\(\Rightarrow3⋮n+1\Rightarrow n+1\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
3. Đặt B = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
B = ( 1 + 2 ) + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )
B = ( 1 + 2 ) + 22 ( 1 + 2 ) + 24 ( 1 + 2 ) + 26 ( 1 + 2 )
B = 1 . 3 + 22 . 3 + 24 . 3 + 26 . 3
B = ( 1 + 22 + 24 + 26 ) . 3 \(\Rightarrow\) B \(⋮\)3
Vậy ...
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.
thanks nhieu nha cho minh hoi ban la trai hay gai vay ket ban nha
a) 4n+6 là số chẵn => tích trên chẵn
b) Giả sử : n là số chẵn => 8n+1 và 6n+5 đều là số lẻ => tích ko chia hết cho 2
Giả sử n là số lẻ =>8n+1 và 6n+5 đều là số lẻ => tích ko chia hết cho 2
Vậy biểu thức trên ko chia hết cho 2 với mọi n
Ta có :
911 = .......9
Khi đó : 911 + 1 = .....9 + 1 = .......0
Vì 911 + 1 có số tận cùng là 0 nên chia hết cho 10 ( đpcm )
9^11 = 9^4.2+3=(9^4)^2 . 9^3 = (......1)^2 . (......9) =(.....1) .( .....9) =.....9
Vậy 9^11 + 1 = (.....9) + 1 = (.......0)chia hết 10 (đpcm)
Ai k mk mk k lại cho !!!
a)
Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9
Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 .
Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 .
Ta có : A = (n-1 ) (n+2) + 12
A = n x n + n x 2 - n - 2 + 12
A = n x n + n + 10 A = n x (n + 1) + 10
A - 10 = n x (n + 1)
Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 .
Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là :
A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .
Vậy A - 10 = n x (n + 1) không chia hết cho 9 .
Hay (n-1 ) (n+2) + 12 không chia hết cho 9
b)
Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49
Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.
Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :
A = ( n + 2 ) ( n +9 ) + 21
A = n x n + 9 x n + 2 x n + 18 + 21
A = n x n + 11 x n + 39
A - 39 = n x ( n + 11)
Vì giả thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên
A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Câu a :
Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9
Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 .
Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 .
Ta có : A = (n-1 ) (n+2) + 12
A = n x n + n x 2 - n - 2 + 12
A = n x n + n + 10 A = n x (n + 1) + 10
A - 10 = n x (n + 1)
Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 .
Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là :
A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .
Vậy A - 10 = n x (n + 1) không chia hết cho 9 .
Hay (n-1 ) (n+2) + 12 không chia hết cho 9
Câu b :
Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49
Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.
Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :
A = ( n + 2 ) ( n +9 ) + 21
A = n x n + 9 x n + 2 x n + 18 + 21
A = n x n + 11 x n + 39
A - 39 = n x ( n + 11)
Vì giã thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên
A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Nguồn :Toán Tiểu Học Pl