tìm nEZ sao cho số hữu tỉ 6n+10/2n+1 đạt giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là số nguyên thì n-21 chia hết cho n+10
=>n+10-31 chia hết cho n+10
=>n+10 thuộc {1;-1;31;-31}
=>n thuộc {-9;-11;21;-41}
b: Để B là số nguyên thì 3n+9 chia hết cho n-4
=>3n-12+21 chia hết cho n-4
=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}
=>n thuộc {5;3;7;1;11;-3;25;-17}
c: C nguyên
=>6n+5 chia hết cho 2n-1
=>6n-3+8 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}
mà n nguyên
nên 2n-1 thuộc {1;-1}
=>n thuộc {1;0}
\(\frac{6n+5}{2n+1}=\frac{6n+3+2}{2n+1}=3+\frac{2}{2n+1}\)
Số hữu tỉ \(\frac{6n+5}{2n+1}\) nguyên \(\Leftrightarrow\) \(\frac{2}{2n+1}\) nguyên
\(\Leftrightarrow2n+1\inƯ\left(2\right)\)
\(\Leftrightarrow2n+1\in\left\{-2;-1;1;2\right\}\)
\(\Leftrightarrow2n\in\left\{-3;-2;0;1\right\}\)
\(\Leftrightarrow n\in\left\{-1;0\right\}\)
6n+52n+1 =6n+3+22n+1 =3+22n+1
Số hữu tỉ 6n+52n+1 nguyên ⇔ 22n+1 nguyên
⇔2n+1∈Ư(2)
⇔2n+1∈{−2;−1;1;2}
⇔2n∈{−3;−2;0;1}
⇔n∈{−1;0}
GTLN = 16
n = -2
nha bạn chúc bạn học tốt nha
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên
=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }
=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }
b. thêm điều kiện n\(\in\)Z
Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n )
\(\frac{n+7}{n+4}=\frac{n+4+3}{n+4}=1+\frac{3}{n+4}\)
vay de ps dat gia tri nguyen thi 3 phai chia het cho n+4
n+4\(\in U\left(3\right)=\left\{1,-1,3,-3\right\}\)
\(\Rightarrow n\in\left\{-3,-5,-1,-7\right\}\)
Ta có :
A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3
a. Để A nguyên thì 13/2n+3∈Z
⇒2n+3∈{−13;−1;1;13}
⇒2n∈{−16;−4;−2;10}
⇒n∈{−8;−2;−1;5}
b. Bổ sung điều kiện : A thuộc Z
Để A max thì 13/2n+3 min
⇔2n+3 max ∈ Z
Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1
⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)
Vậy A max = 16 <=> n = -2
max là giá trị lớn nhất
min là giá trị nhỏ nhất
HT
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
c)
goi D LA U (6N+7;2N+1)
- =>6N+7 5CHIAHET CHO D
=>2N+1 CHIA HET CHO D
=>1(6N+7) CHIA HET CHO D
=>3(2N+6) CHIA HETS CHO D
=>[6N+7)-(6N+6)] CHIA HET CHO D
=>D CHIA HET CHO D
=>D=1
=>6N+7/2N+1 LA P/S TOI GIAN
Ta có : \(A=\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để A là số nguyên thì \(5⋮3n+2\)
hay \(3n+2\inƯ_5=\left\{\pm1;\pm5\right\}\)
3n+2 | 1 | -1 | 5 | -5 |
3n | -1 | -3 | 3 | -7 |
n | \(\frac{-1}{3}\) | -1 | 1 | \(\frac{-7}{3}\) |
Vậy để A nguyên thì \(n\in\left\{\frac{-1}{3};-1;1;\frac{-7}{3}\right\}\)
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
\(\frac{6n+10}{2n+1}=\frac{6n+3+7}{2n+1}=3+\frac{7}{2n+1}\inℤ\Leftrightarrow\frac{7}{2n+1}\inℤ\)
\(\Leftrightarrow2n+1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\Leftrightarrow n\in\left\{-4,-2,0,3\right\}\).