Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là số nguyên thì n-21 chia hết cho n+10
=>n+10-31 chia hết cho n+10
=>n+10 thuộc {1;-1;31;-31}
=>n thuộc {-9;-11;21;-41}
b: Để B là số nguyên thì 3n+9 chia hết cho n-4
=>3n-12+21 chia hết cho n-4
=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}
=>n thuộc {5;3;7;1;11;-3;25;-17}
c: C nguyên
=>6n+5 chia hết cho 2n-1
=>6n-3+8 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}
mà n nguyên
nên 2n-1 thuộc {1;-1}
=>n thuộc {1;0}
\(\frac{6n+5}{2n+1}=\frac{6n+3+2}{2n+1}=3+\frac{2}{2n+1}\)
Số hữu tỉ \(\frac{6n+5}{2n+1}\) nguyên \(\Leftrightarrow\) \(\frac{2}{2n+1}\) nguyên
\(\Leftrightarrow2n+1\inƯ\left(2\right)\)
\(\Leftrightarrow2n+1\in\left\{-2;-1;1;2\right\}\)
\(\Leftrightarrow2n\in\left\{-3;-2;0;1\right\}\)
\(\Leftrightarrow n\in\left\{-1;0\right\}\)
6n+52n+1 =6n+3+22n+1 =3+22n+1
Số hữu tỉ 6n+52n+1 nguyên ⇔ 22n+1 nguyên
⇔2n+1∈Ư(2)
⇔2n+1∈{−2;−1;1;2}
⇔2n∈{−3;−2;0;1}
⇔n∈{−1;0}
\(\frac{n+7}{n+4}=\frac{n+4+3}{n+4}=1+\frac{3}{n+4}\)
vay de ps dat gia tri nguyen thi 3 phai chia het cho n+4
n+4\(\in U\left(3\right)=\left\{1,-1,3,-3\right\}\)
\(\Rightarrow n\in\left\{-3,-5,-1,-7\right\}\)
Ta có : \(A=\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để A là số nguyên thì \(5⋮3n+2\)
hay \(3n+2\inƯ_5=\left\{\pm1;\pm5\right\}\)
3n+2 | 1 | -1 | 5 | -5 |
3n | -1 | -3 | 3 | -7 |
n | \(\frac{-1}{3}\) | -1 | 1 | \(\frac{-7}{3}\) |
Vậy để A nguyên thì \(n\in\left\{\frac{-1}{3};-1;1;\frac{-7}{3}\right\}\)
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
2.
\(\frac{3n+9}{n-4}\in Z\)
\(\Rightarrow3n+9⋮n-4\)
\(\Rightarrow3n-12+21⋮n-4\)
\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)
\(\Rightarrow21⋮n-4\)
\(\Rightarrow n-4\inƯ\left(21\right)\)
\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)
\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)
\(B=\frac{6n+5}{2n-1}\in Z\)
\(\Rightarrow6n+5⋮2n-1\)
\(\Rightarrow6n-3+8⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)
\(\Rightarrow8⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(8\right)\)
\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)
\(n\in Z\)
\(\Rightarrow n\in\left\{0;1\right\}\)
ĐKXĐ: \(x\ne-1\)
\(X=\dfrac{2n+10}{n+1}=\dfrac{2\left(n+1\right)+8}{n+1}=2+\dfrac{8}{n+1}\in Z\)
\(\Rightarrow\left(n+1\right)\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Kết hợp ĐKXĐ:
\(\Rightarrow n\in\left\{-9;-5;-3;-2;0;1;3;7\right\}\)
\(\frac{6n+10}{2n+1}=\frac{6n+3+7}{2n+1}=3+\frac{7}{2n+1}\inℤ\Leftrightarrow\frac{7}{2n+1}\inℤ\)
\(\Leftrightarrow2n+1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\Leftrightarrow n\in\left\{-4,-2,0,3\right\}\).