Cho a+b=1
tìm GTNN của A=a(a^2+2b)+b(b^2-a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)\)
\(=a^3+b^3+ab\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(=a^2-ab+b^2+ab\)
\(=a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\)
Dấu "=" xảy ra khi a=b=1/2.
Vậy MinA=1/2.
(bất đẳng thức \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) thì bạn tự c/m nhé)
a)A=4(x+11/8)^2 -153/16
Min A=-153/16 khi x=-11/8
b)B=3(x-1/3)^2 -4/3
Min B=-4/3 khi x=1/3
Bài 1:
a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)
\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)
b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)
Bài 2:
a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)
b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)
\(maxB=11\Leftrightarrow x=-2\)
\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\ge\dfrac{4}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}=4\)
dấu"=" xảy ra<=>\(a=b=\dfrac{1}{2}\)
Áp dụng BĐT BSC và Cosi:
\(\dfrac{1}{a^2+b^2}+\dfrac{2}{ab}+4ab=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{4ab}+4ab+\dfrac{5}{4ab}\)
\(\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{1}{4ab}.4ab}+\dfrac{5}{\left(a+b\right)^2}\)
\(=\dfrac{4}{\left(a+b\right)^2}+2+\dfrac{5}{\left(a+b\right)^2}\ge4+2+5=11\)
\(min=11\Leftrightarrow a=b=\dfrac{1}{2}\)
\(\left\{{}\begin{matrix}a;b;c\ge0\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le1\)
\(\Rightarrow a\left(a-1\right)\le0\Rightarrow a^2\le a\)
\(\Rightarrow\sqrt{2a^2+3a+4}=\sqrt{a^2+a^2+3a+4}\le\sqrt{a^2+a+3a+4}=a+2\)
Tương tự và cộng lại:
\(\Rightarrow M\le a+2+b+2+c+2=7\)
\(M_{max}=7\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
Từ giả thiết:
\(a+b+1=8ab\le2\left(a+b\right)^2\)
\(\Rightarrow2\left(a+b\right)^2-\left(a+b\right)-1\le0\)
\(\Rightarrow\left(a+b-1\right)\left(2a+2b+1\right)\le0\)
\(\Rightarrow a+b-1\le0\) (do \(2a+2b+1>0\))
\(\Rightarrow1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\dfrac{1}{4}\Rightarrow\dfrac{1}{ab}\ge4\)
Ta có:
\(A=\dfrac{a^2+b^2}{a^2b^2}\ge\dfrac{2ab}{a^2b^2}=\dfrac{2}{ab}\ge2.4=8\)
\(A_{min}=8\) khi \(a=b=\dfrac{1}{2}\)
cho em hỏi là \(a+b+1=8ab\) ≤ \(2\left(a+b\right)^2\)
vì sao ạ? em chưa có hiểu lắm
\(A=ab+\dfrac{1}{ab}+2=ab+\dfrac{1}{16ab}+\dfrac{15}{16}ab+2\)
\(A\ge2\sqrt{\dfrac{ab}{16ab}}+\dfrac{15}{4\left(a+b\right)^2}+2=\dfrac{25}{4}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
`A=(a+1/b)(b+1/a)`
`=ab+1+1+1/(ab)`
`=2+ab+1/(16ab)+15/(16ab)`
Áp dụng cosi
`=>ab+1/(16ab)>=1/2`
`ab<=(a+b)^2/4=1/4`
`=>16ab<=4`
`=>15/(16ab)>=15/4`
`=>A>=15/4+1/2+2=25/4`
Dấu "=" xảy ra khi `a=b=1/2`
\(A=\dfrac{b^2}{b-1}=\dfrac{b^2-1+1}{b-1}=b+1+\dfrac{1}{b-1}=b-1+\dfrac{1}{b-1}+2\)
Áp dụng BĐT cosi cho \(b>0\left(b>1\right)\)
\(A=b-1+\dfrac{1}{b-1}+2\ge2\sqrt{\left(b-1\right)\cdot\dfrac{1}{b-1}}+2=2+2=4\)
Dấu \("="\Leftrightarrow\left(b-1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}b-1=1\\b-1=-1\left(ktm\right)\end{matrix}\right.\Leftrightarrow b=2\left(tm\right)\)
Ta có: a = 4b + 1
=> a + 7 = 4b + 1 + 7= 4b + 8 \(⋮\)b
=> 8 \(⋮b\) và b là số tự nhiên
=> b\(\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)
+ b = 1=> a = 5 => a + 2b = 5 +2 .1 = 7 là số nguyên tố ( thỏa mãn )
+) b = 2 => a = 9 => a + 2b = 9 + 2 . 2 = 13 là số nguyên tố ( thỏa mãn )
+) b = 4 => a = 17 => a + 2b = 17 + 2.4 = 25 không là số nguyên tố ( loại )
+) b = 8 => a = 33 => a + 2b = 49 không là số nguyen tố ( loại )
Vậy có các cặp (a; b ) là ( 5; 1) và ( 9; 2).
I am➻Minh từ dòng 5 trở đi sai
A = a( a2 + 2b ) + b( b2 - a )
= a3 + 2ab + b3 - ab
= ( a3 + b3 ) + ab
= ( a + b )( a2 - ab + b2 ) + ab
= a2 - ab + b2 + ab ( do a + b = 1 )
= a2 + b2
Áp dụng bđt Bunyakovsky dạng phân thức ta có : \(A=a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\)
Đẳng thức xảy ra <=> a = b = 1/2
Vậy MinA = 1/2
mình nhầm
\(A=a^2+b^2\)
\(2A=\left(a^2+b^2\right)\cdot\left(1+1\right)\)
Áp dụng BĐT Bu-nhi-a-cốp-xki ta có:
\(\left(a^2+b^2\right)\left(1+1\right)\ge\left(a\cdot1+b\cdot1\right)^2\)
\(\Rightarrow2A\ge\left(a+b\right)^2=1\)
\(\Rightarrow A\ge\frac{1}{2}\)
dấu = xảy ra
<=> \(a=b=\frac{1}{2}\)