8+2+2+2+2+2+2+2+2+2+2 ai đó cứu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5,6 x 2 + 2,8 x 8 +11,2 x 2 - 50,4
= 5,6 x 2 + (2,8 x 2) x 4+ (11,2:2) x (2 x 2) - 50,4
= 5,6 x 2 + 5,6 x 4+ 5,6 x 4 - 5,6 x 9
= 5,6 x (2+4+4-9)
= 5,6 x 1= 5,6
a) (x+2)(x^2-2x+4)-x(x^2+2)=15
<=> x^3 + 8 - x^3 - 2x = 15
<=> -2x = 7
<=> x = -7/2
b) (x+3)^3-x(3x+1)^2+(2x+1)(4x^2-2x+1)=28
<=> x^3 + 9x² + 27x + 27 - x(9x² + 6x + 1) + 8x^3 + 1 = 28
<=> x^3 + 9x² + 27x + 27 - 9x^3 - 6x² - x + 8x^3 + 1 - 28 = 0
<=> 3x² + 26x = 0
<=> x(3x + 26) = 0
Vậy x = 0 và x = -26/3
c) (x^2-1)^3-(x^4+x^2+1)(x^2-1)=0
<=> (x² - 1)[(x² -1)² - x^4 - x² - 1] = 0
<=> (x-1)(x+1)(x^4 - 2x² + 1 - x^4 - x² - 1 ) = 0
<=> -(x-1)(x+1)3x² = 0
Vậy nghiệm là x = 1 ; -1 ; 0
Ta có : 2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-82x+2x+1+2x+2+...+2x+2015=22019−8
\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-8⇔2x(1+2+22+...+22015)=22019−8 (1)
Đặt : A=1+2+2^2+...+2^{2015}A=1+2+22+...+22015
\Rightarrow2A=2+2^2+2^3+...+2^{2016}⇒2A=2+22+23+...+22016
\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)⇒2A−A=(2+22+23+...+22016)−(1+2+22+...+22015)
\Rightarrow A=2^{2016}-1⇒A=22016−1
Khi đó (1) trở thành :
2^x\left(2^{2016}-1\right)=2^{2019}-2^32x(22016−1)=22019−23
\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)⇔2x(22016−1)=23(22016−1)
\Leftrightarrow2^x=2^3\left(2^{2016}-1\ne0\right)⇔2x=23(22016−1=0)
\Leftrightarrow x=3⇔x=3
Vậy : x=3x=3
2x+2x+1+...+2x+2015=22019−82�+2�+1+...+2�+2015=22019-8
→2x.1+2x.2+....+2x.22015=22019−8→2�.1+2�.2+....+2�.22015=22019-8
→2x.(1+2+...+22015)=22019−8→2�.(1+2+...+22015)=22019-8
Đặt:
A=1+2+...+22015�=1+2+...+22015
2A=2.(1+2+...+22015)2�=2.(1+2+...+22015)
2A=2+22+...+220162�=2+22+...+22016
2A−A=(2+22+...+22016)−(1+2+...+22015)2�-�=(2+22+...+22016)-(1+2+...+22015)
A=2+22+...+22016−1−2−...−22015�=2+22+...+22016-1-2-...-22015
A=22016−1�=22016-1
Nên:
2x.(1+2+...+22015)=22019−82�.(1+2+...+22015)=22019-8
→2x.(22016−1)=22019−8→2�.(22016-1)=22019-8
→2x=(22019−8):(22016−1)→2�=(22019-8):(22016-1)
→2x=22019−822016−1→2�=22019-822016-1
→2x=23.(22016−1)22016−1→2�=23.(22016-1)22016-1
→2x=23→2�=23
→x=3→�=3
Vậy x=3.
Ta có; \(\left(\frac{a}{2}-b\right)^2\ge0;\forall x\)
\(\Rightarrow\frac{a^2}{4}+b^2\ge2.\frac{a}{2}.b=ab\)
đpcm
\(D=1-4+4^2-4^3+4^4-...+4^{2016}-4^{2017}\) (sửa \(2^{2017}\) thành \(4^{2017}\))
\(\Rightarrow D=\left(1-4\right)+4^2\left(1-4\right)+4^4\left(1-4\right)-...+4^{2016}\left(1-4\right)\)
\(\Rightarrow D=\left(-3\right)+4^2.\left(-3\right)+4^4.\left(-3\right)-...+4^{2016}.\left(-3\right)\)
\(\Rightarrow D=\left(-3\right)\left(1+4^2+4^4+...+4^{2016}\right)\)
\(\Rightarrow4D=\left(-3\right)\left(4+4^3+4^5+...+4^{2017}\right)\)
\(\Rightarrow4D+D=\left(-3\right)\left(1+4+4^2+4^3+4^4+...+4^{2016}+4^{2017}\right)\)
\(\Rightarrow5D=\left(-3\right)\dfrac{4^{2017+1}-1}{4-1}\)
\(\Rightarrow D=\left(-3\right)\dfrac{4^{2018}-1}{3.5}\)
\(\Rightarrow D=\left(-1\right)\dfrac{4^{2018}-1}{5}=\dfrac{1-4^{2018}}{5}\)
B1:
số gạo 3 tuần đaafu họ quyên góp là :
8400.1/2=4200
so gạo quyên góp lần 2 là :
8400.2/3= 5600
so gạo quyên góp lần 3 là :
8400.1/4= 2100
Tổng số gạo họ đax quyên góp là:
4200+5600+2100= 11900
so gạo vượt chỉ tiêu là:
11900-8400= 3500
\(B=\left(8-2,25+\dfrac{2}{7}\right)-\left(-6-\dfrac{3}{7}+1\dfrac{1}{4}\right)-\left(3+0,5-1\dfrac{2}{7}\right)\\ B=8-\dfrac{9}{4}+\dfrac{2}{7}+6+\dfrac{3}{7}-\dfrac{5}{4}-3-\dfrac{1}{2}+\dfrac{9}{7}\\ B=\left(8+6-3\right)+\left(-\dfrac{9}{4}-\dfrac{5}{4}\right)+\left(\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{9}{7}\right)-\dfrac{1}{2}\)
\(B=11-\dfrac{7}{2}+2-\dfrac{1}{2}\\ B=\left(11+2\right)+\left(-\dfrac{7}{2}-\dfrac{1}{2}\right)\\ B=13-4\\ B=9.\)
8+2+2+2+2+2+2+2+2+2+2
=28
HT
=8 + 2 x 10
= 8 + 20
= 28