K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

Ai đôn nâu

7 tháng 4 2016

\(\Leftrightarrow\frac{6n-1}{3n+2}=\frac{5}{4}\Rightarrow4\left(6n-1\right)=5\left(3n+2\right)\)

=>24n-4=15n+10

=>24n-15n=10+4

=>9n=14

=>n=\(\frac{14}{9}=1\frac{5}{9}\)

24 tháng 7 2019

\(B=\frac{6n-5}{3n+1}\inℤ\)

=> 6n - 5 ⋮ 3n + 1

=> 6n + 2 - 7 ⋮ 3n + 1

=> 3(3n + 1) - 7 ⋮ 3n + 1

=> 7 ⋮ 3n + 1

=> 3n + 1 thuộc Ư(7)

=> 3n + 1 thuộc {-1; 1; -7; 7}

=> 3n thuộc {-2; 0; -8;  6}

=> n thuộc {0; 2} vì n thuộc Z

24 tháng 7 2019

a) Để \(B\inℤ\)

\(\Rightarrow\left(6n-5\right)⋮\left(3n+1\right)\)

\(\Rightarrow\left(6n+2-7\right)⋮\left(3n+1\right)\)

\(\Rightarrow2.\left(3n+1\right)-7⋮\left(3n+1\right)\)

Vì \(2.\left(3n+1\right)⋮\left(3n+1\right)\)

nên \(-7⋮3n+1\)

\(\Rightarrow3n+1\inƯ_{\left(-7\right)}\)

\(\Rightarrow3n+1\in\left\{1;-1;7;-7\right\}\)

Lập bảng xét 4 trường hợp ta có : 

\(3n+1\)\(1\)\(-1\)\(7\)\(-7\)
\(n\)\(0\)\(-\frac{2}{3}\)\(2\)\(-\frac{8}{3}\)

Vậy \(n\in\left\{0;2\right\}\)

16 tháng 3 2019

a) Để A có giá trị nguyên

suy ra (6n - 1) chia hết cho (3n + 2) 

Vì (3n + 2) chia hết cho (3n + 2) suy ra 2(3n + 2) chia hết cho (3n + 2) hay (6n + 4) chia hết cho (3n + 2)

suy ra [(6n - 1) - (6n + 4)] chia hết cho (3n + 2)

            (6n - 1 - 6n - 4) chia hết cho (3n + 2)

                        5           chia hết cho (3n + 2)

hay 3n + 2 thuộc Ư(5). Mà Ư(5) thuộc {1; -1; 5; -5}

Ta có bảng sau:

3n + 21-15-5

3n 

-1-33-7
n-1/3 ko thuộc Z (loại)-11

-7/3 ko thuộc Z (loại)

                    Vậy n = 1 hoặc n = -1

b) Ta có: A=6n - 1/3n + 2 = 6n + 4 - 5/3n + 2 = 2(3n + 2) - 5/3n + 2 = 2 - 5/3n + 2

Để A min suy ra 5/3n + 2 max

Vì 5 ko thay đổi suy ra 3n + 2 min và 5/3n + 2 là số âm nhỏ nhất

Suy ra 3n + 2 là số âm lớn nhất nên 3n + 2 = -1

                                                              3n   = -1 - 2 = -3

                                                                n   = -3 : 3 = -1

                                  Vậy min A = -7 tại n = -1 

Nhớ k mình đúng nhé!!!Thanks các bạn nhiều

16 tháng 9 2017

Ta có :

\(A=\frac{6n-1}{3n+2}\)

\(A=\frac{6n+4-5}{3n+2}\)

\(A=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Mà để \(2-\frac{5}{3n+2}\)có giá trị nhỏ nhất

\(\Rightarrow\frac{5}{3n+2}\)phải có giá trị lớn nhất

Mà để \(\frac{5}{3n+2}\)có giá trị lớn nhất thì \(3n+2\)phải là số nguyên âm nhỏ nhất và là ước của 5

\(\Rightarrow3n+2=-1\)để \(\frac{5}{3n+2}\) bằng -5

\(\Rightarrow3n=-3\)

\(\Rightarrow n=-1\)

Vậy n=-1 thì A có giá trị nhỏ nhất

16 tháng 9 2017

co boai tao biet

18 tháng 3 2015

ta có 

3n+2 \(\vdots \)3n+2 \(\Rightarrow \) 2.(3n+2) \(\vdots\)3n+2

Suy ra 6n+4 chia hết cho 3n+2 mà 6n-1 cũng chia hết cho 3n+2 suy ra 6n+4-(6n+1) chia hết cho 3n+2

Suy ra 3 chia hết cho 3n+2 suy ra 3n+2 thuộc ước của 3. suy ra tìm n sau đó thay n vô sẽ tìm được giá trị nhỏ nhất !

4 tháng 3 2018

mình cần gấp nhé

4 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)

Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do đó : 

\(3n+1\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(0\)\(\frac{-2}{3}\)\(\frac{1}{3}\)\(-1\)\(1\)\(\frac{-5}{3}\)

Lại có  \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)

Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời  

14 tháng 5 2017

Đề A đạt giá trị nguyên

=> 3n + 9 chia hết cho n - 4

3n - 12 + 12 + 9 chia hết cho n - 4

3.(n - 4) + 2c1 chia hết cho n - 4

=> 21 chia hết cho n - 4

=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}

Thay n - 4 vào các giá trị trên như

n - 4 = 1

n - 4 = -1

....... 

Ta tìm được các giá trị : 

n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}

14 tháng 5 2017

a) Để A thuộc Z           (A nguyên)

=> 3n+9 chia hết cho n-4

hay 3n+9-12+12 chia hết cho n-4                   (-12+12=0)

      3n-12+9+12 chia hết cho n-4

     3n-12+21 chia hết cho n-4

     3(n-4)+21 chia hết cho n-4

Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4

mà Ư(21)={21;1;7;3} nên ta có bảng:

n-421137
n25 (tm)5 (tm)7 (tm)11 (tm)

Vậy n={25;5;7;11} thì A nguyên.

b)

Để B thuộc Z           (B nguyên)

=> 6n+5 chia hết cho 2n-1

hay 6n+5-3+3 chia hết cho 2n-1                   (-3+3=0)

      6n-3+5+3 chia hết cho 2n-1

     6n-3+8 chia hết cho 2n-1

     3(2n-1)+8 chia hết cho 2n-1

Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1

mà Ư(8)={8;1;2;4} nên ta có bảng:

2n-18124
n4.5 (ktm)1 (tm)1.5 (ktm)2.5 (ktm)

Vậy, n=1 thì B nguyên.