1/2+1/4+1/8+1/16+ ......... +1/2048= ...........làm đúng mình tick cho nha
trình bày bài giải(cách lớp 4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Đặt }S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}.\)
\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(\Rightarrow2S-S=S=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)
\(\Rightarrow S=1-\frac{1}{2048}=\frac{2047}{2048}\)
gọi biểu thức là A
A=1/2+1/4+1/8+...+1/2048=1/2+1/2^2+1/2^3+...+1/2^10
=>2A=1+1/2+1/2^2+...+1/2^9
=>A=2A-A(bạn đặt cột dọc ra rồi sẽ thấy:1/2-1/2=0;1/2^2-1/2^2=0;...)Ta được kết quả bằng 1+1/2^10
Đặt A =1/2 + 1/4 + 1/8 + ...+ 1/1024 + 1/2048
A= 1/2 + 1/2^2 + 1/2^3+...+ 1/2^10 + 1/2^11
2A= 1 +1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10
2A-A= (1 +1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10) - (1/2 + 1/2^2 + 1/2^3+...+ 1/2^10 + 1/2^11)
A= 1+1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10 - 1/2 - 1/2^2 - 1/2^3 - ...- 1/2^10 - 1/2^11
A= 1- 1/2^11
A= 2047/ 2048
Đặt A = 2 + 4 + 8 + ... + 2048
= 2 + 22 + 23 + ... + 211
=> 2A = 22 + 23 + 24 + ... + 212
Lấy 2A trừ A theo vế ta có
2A - A = (22 + 23 + 24 + ... + 212) - (2 + 22 + 23 + ... + 211)
=> A = 212 - 2
Đặt \(A=2+4+8+16+...+1024+2048\)
\(\Rightarrow2A=4+8+16+32+...+2048+4096\)
\(\Rightarrow2A-A=4096-2\)
\(\Rightarrow A=4094\)
Đặt tổng trên là A . Ta có:
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(A=1-\frac{1}{1024}\)
\(A=\frac{1023}{1024}\)
Đặt
\(S=1+2+4+...+2048+4096\)
\(S=1+2^1+2^2+...+2^{11}+2^{12}\)
\(2S=2+2^2+2^3+...+2^{12}+2^{13}\)
\(2S-S=\left(2+2^2+2^3+...+2^{13}\right)-\left(1+2+2^2+..+2^{12}\right)\)
\(S=2^{13}-1=8192-1=8191\)
Gọi A=1+2+4+8+16+...+1024+2048+4096
2A=2+4+8+16+32+...+2048+4096+8192
2A-A=(2+4+8+16+32+...+2048+4096+8192)-(1+2+4+8+16+...+1024+2048+4096)
A=8192-1
A=8191
= 128/256 + 64/256 + 32/256 + 16/256 + 8/256 + 4/256 + 2/256 + 1/256
= 255/256
Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/2048
2A = 1 + 1/2 + 1/4 + 1/8 + ... + 1/1024
2A - A = 1 + 1/2 + 1/4 + 1/8 + ... + 1/1024 - 1/2 - 1/4 - 1/8 - 1/16 - ... . 1/2048
A = 1 - 1/ 2048
A = 2047 / 2048
Vậy 1/2+ 1/4 + 1/8 + 1/16 + ... + 1/2048 = 2047/2048