Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. M là một điểm di động trên AB. Một mặt phẳng ($\alpha$) đi qua M và song song với SA và BC; ($\alpha$) cắt SB, SC, CD lần lượt tại N,P và Q.
a) Tứ giác MNPQ là hình gì?
b) Gọi I là giao điểm của MN và PQ. Chứng minh rằng I nằm trên một đường thẳng cố định khi điểm M di động.
a) Trong (SAB): MN // SA (N \(\in\) SB)
Trong (ABCD): MQ // BC (Q \(\in\)DC).
Trong (SBC): NP // BC (P \(\in\) SB).
Ta có MNPQ là hình thang do NP // MQ (// BC).
b) Nhận thấy khi M di động thì MN luôn nằm trong (SAB) và PQ luôn nằm trong (SDC), do đó giao điểm I của hai đường thẳng MN và PQ sẽ luôn nằm trên giao tuyến của (SAB) và (SDC).