Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì M ∈ (SAB)
Và nên (α) ∩ (SAB) = MN
và MN // SA
Vì N ∈ (SBC)
Và nên (α) ∩ (SBC) = NP
và NP // BC (1)
⇒ (α) ∩ (SCD) = PQ
Q ∈ CD ⇒ Q ∈ (ABCD)
Và nên (α) ∩ (ABCD) = QM
và QM // BC (2)
Từ (1) và (2) suy ra tứ giác MNPQ là hình thang.
b) Ta có:
⇒ (SAB) ∩ (SCD) = Sx và Sx // AB // CD
MN ∩ PQ = I ⇒
MN ⊂ (SAB) ⇒ I ∈ (SAB), PQ ⊂ (SCD) ⇒ I ∈ (SCD)
⇒ I ∈ (SAB) ∩ (SCD) ⇒ I ∈ Sx
(SAB) và (SCD) cố định ⇒ Sx cố định ⇒ I thuộc Sx cố định.
Tham khảo hình vẽ:
a) Ta có:
\(\begin{array}{l}MN = \left( \alpha \right) \cap \left( {ABC{\rm{D}}} \right)\\C{\rm{D}} = \left( {SC{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\PQ = \left( \alpha \right) \cap \left( {SC{\rm{D}}} \right)\\MN\parallel C{\rm{D}}\end{array}\)
Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MN\parallel C{\rm{D}}\parallel PQ\).
\( \Rightarrow MNPQ\) là hình bình hành.
b) Ta có:
\(\begin{array}{l}\left. \begin{array}{l}I \in MQ \Rightarrow I \in \left( {SA{\rm{D}}} \right)\\I \in NP \Rightarrow I \in \left( {SBC} \right)\end{array} \right\} \Rightarrow I \in \left( {SA{\rm{D}}} \right) \cap \left( {SBC} \right)\\ \Rightarrow SI = \left( {SA{\rm{D}}} \right) \cap \left( {SBC} \right)\\A{\rm{D}} = \left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\BC = \left( {SBC} \right) \cap \left( {ABC{\rm{D}}} \right)\\BC\parallel A{\rm{D}}\end{array}\)
Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(A{\rm{D}}\parallel BC\parallel SI\).
Vậy \(I\) luôn luôn thuộc đường thẳng \(d\) đi qua \(S\) song song với \(AD\) và \(BC\) cố định khi \(M\) di động trên \(AD\).
a) (P) // BC nên (P) sẽ cắt (SBC) theo giao tuyến B'C' song song với BC.
Tương tự, (P) cắt (SAD) theo giao tuyến MN song song với AD.
Khi M trùng với trung điểm A' của cạnh SA thì thiết diện MB'C'N' là hình bình hành.
b) Với M không trùng với A':
Gọi I ∈ B′M ∩ C′N. Ta có:
I ∈ B′M ⊂ (SAB), tương tự I′ ∈ C′N ⊂ (SCD)
Như vậy I ∈ Δ = (SAB) ∩ (SCD).
a)
⇒ (α) ∩ (ABC) = MN và MN // AB
Ta có N ∈ (BCD) và
Nên ⇒ (α) ∩ (BCD) = NP và NP // CD
Ta có P ∈ (ABD)
Và nên ⇒ (α) ∩ (ABD) = PQ và PQ // AB
nên ⇒ (α) ∩ (ACD) = MQ và MQ // CD
Do đó MN // PQ và NP // MQ, Vậy tứ giác MNPQ là hình bình hành.
b) Ta có: MP ∩ NQ = O. Gọi I là trung điểm của CD.
Trong tam giác ACD có : MQ // CD ⇒ AI cắt MQ tại trung điểm E của MQ.
Trong tam giác ACD có : NP // CD ⇒ BI cắt NP tại trung điểm F của NP.
Vì MNPQ là hình bình hành nên ta có
EF // MN ⇒ EF // AB
Trong ΔABI ta có EF // AB suy ra : IO cắt AB tại trung điểm J
⇒ I, O, J thẳng hàng
⇒ O ∈ IJ cố định.
Vì M di động trên đoạn AC nên Ochạy trong đoạn IJ .
Vậy tập hợp các điểm O là đoạn IJ.
\(\left(\alpha\right)//SA\) và BC nên \(\left(\alpha\right)//\left(SAD\right)\)
=> MQ //SA, NP//SD ta có
MN//PQ//AD//BC
ABCD : \(\dfrac{BM}{BA}=\dfrac{CN}{CD}\left(1\right)\)
Theo định lí Ta let trong tam giác:
\(\Delta SAB:\dfrac{BM}{BA}=\dfrac{BQ}{BS}=\dfrac{MQ}{SA}\left(2\right)\)
\(\Delta SCD:\dfrac{CN}{CD}=\dfrac{CP}{CS}=\dfrac{PN}{SD}\left(3\right)\)
Từ (1) (2) và (3) suy ra: \(MQ=NP=\dfrac{b-x}{b}a\)
\(PQ=\dfrac{x}{b}.2a\)
\(MN=a+\dfrac{x}{b}a\)
=> thiết diện là hình thang cân và \(S_{td}=\dfrac{1}{2}\left(MN+PQ\right)\sqrt{MQ^2-\left(\dfrac{MN-PQ}{2}\right)^2}\)
= \(\dfrac{1}{2}\left(\dfrac{ab+ax}{b}+\dfrac{2ax}{b}\right)\sqrt{\dfrac{a^2\left(b-x\right)^2}{b^2}-\dfrac{a^2\left(b-x\right)^2}{4b^2}}\)
=\(\dfrac{1}{2}.\dfrac{a\left(b+3x\right)}{b}.\dfrac{a\sqrt{3}\left(b-x\right)}{2b}\)
= \(\dfrac{a^2\sqrt{3}}{12b^2}\left(3x+b\right)\left(3b-3x\right)\le\dfrac{a^2\sqrt{3}}{12b^2}\left(\dfrac{3x+b+3b-3x}{2}\right)^2=\dfrac{a^2\sqrt{3}}{3}\)
Vậy diện tích lớn nhất của thiết diện là \(\dfrac{a^2\sqrt{3}}{3}\) khi x= \(\dfrac{b}{3}\)
[TEX]\frac{QP}{BC}=\frac{SQ}{SB}=\frac{AM}{AB}[/TEX]
\Rightarrow[TEX]QP=\frac{2ax}{b}[/TEX]
[TEX]\frac{QM}{SA}=\frac{BM}{BA}[/TEX]
\Rightarrow[TEX]QM=\frac{a(b-x)}{b}[/TEX]
Do MNPQ là hình thang cân
\Rightarrow[TEX]MN=\frac{a(b-x)}{b}+\frac{2ax}{b}=\frac{ab+ax}{b}[/TEX]
Vậy [TEX]S_{MNPQ}=\frac{(\frac{2ax}{b}+\frac{ab+ax}{b})\frac{\sqrt{3}a(b-x)} {2B}}{2}[/TEX]
=[TEX]\frac{(3ax+ab)(\sqrt{3}ab-\sqrt{3}ax)}{b^2}[/TEX]
a) Ta có:
- M là trung điểm của AB, nên M là trung điểm của đoạn thẳng AB.
- P là trung điểm của SC, nên P là trung điểm của đoạn thẳng SC.
- I là trung điểm của SB, nên I là trung điểm của đoạn thẳng SB.
Vì M, P, I lần lượt là trung điểm của các đoạn thẳng AB, SC, SB, nên ta có:
2AM = AB, 2CP = CS, 2BI = BS.
Giả sử BC không song song với MP. Khi đó, ta có:
- MP cắt BC tại H.
- MP cắt SA tại K.
- MP cắt QN tại L.
Theo định lý , ta có:
AH/HC = AK/KS = AL/LQ.
Từ đó, ta có:
2AM/2CP = AK/KS = AL/LQ.
Tuy nhiên, ta đã biết rằng 2AM/2CP = AB/CS = BS/CS = BI/CS = 2BI/2CP.
Vậy ta có:
2BI/2CP = AK/KS = AL/LQ.
Do đó, ta có AK = AL và KS = LQ.
Từ đó, ta suy ra K = L và Sẽ có MP song song với BC.
Vậy BC // (IMP).
b) Thiết diện của mặt phẳng (α) với hình chóp là một hình tam giác. Để xác định hình tam giác này, cần biết thêm thông tin về góc giữa mặt phẳng (α) và mặt phẳng đáy ABC.
c) Đường thẳng CN và mặt phẳng (SMQ) giao nhau tại một điểm. Để tìm giao điểm này, cần biết thêm thông tin về góc giữa đường thẳng CN và mặt phẳng (SMQ).
--thodagbun--
(Bn tham khảo cách lm đy nhe )
a) Giao điểm M của CD và mp(C’AE).
Trong mp(ABCD), d cắt CD tại M, ta có:
+ M ∈ CD
+ M ∈ d ⊂ (C’AE) ⇒ M ∈ (C’AE)
Vậy M là giao điểm của CD và mp(C’AE).
b) + Trong mặt phẳng (SCD), gọi giao điểm của MC’ và SD là N.
N ∈ MC’ ⊂ (C’AE) ⇒ N ∈ (C’AE).
N ∈ SD ⊂ (SCD) ⇒ N ∈ (SCD)
⇒ N ∈ (C’AE) ∩ (SCD).
⇒ (C’AE) ∩ (SCD) = C’N.
+ (C’AE) ∩ (SCB) = C’E.
+ (C’AE) ∩ (SAD) = AN.
+ (C’AE) ∩ (ABCD) = AE
Vậy thiết diện của hình chóp cắt bởi mặt phẳng (C’AE) là tứ giác C’NAE
a) Trong (SAB): MN // SA (N \(\in\) SB)
Trong (ABCD): MQ // BC (Q \(\in\)DC).
Trong (SBC): NP // BC (P \(\in\) SB).
Ta có MNPQ là hình thang do NP // MQ (// BC).
b) Nhận thấy khi M di động thì MN luôn nằm trong (SAB) và PQ luôn nằm trong (SDC), do đó giao điểm I của hai đường thẳng MN và PQ sẽ luôn nằm trên giao tuyến của (SAB) và (SDC).